Max-Planck-Institut für Mathematik Bonn

Quadratic functions and Artin-Schreier curves in odd characteristic
by

Nurdagül Anbar

Quadratic functions and Artin-Schreier curves in odd characteristic

Nurdagül Anbar

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

QUADRATIC FUNCTIONS AND ARTIN-SCHREIER CURVES IN ODD CHARACTERISTIC

MPIM Preprint by Nurdagül Anbar
nurdagulanbar2@gmail.com

1. Abstract

For an odd prime p and an even integer n with $\operatorname{gcd}(n, p)>1$, we consider quadratic functions from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} of codimension k. For various values of k, we obtain classes of quadratic functions giving rise to maximal and minimal Artin-Schreier curves over $\mathbb{F}_{p^{n}}$. We completely classify all maximal and minimal curves obtained from quadratic functions of codimension 2 and coefficients in the prime field \mathbb{F}_{p}. These results complement earlier results in [1] for the case that $\operatorname{gcd}(n, p)=$ 1. This is a joint work with Wilfried Meidl.

2. Introduction

In this article we consider the Artin-Schreier cover of the $\mathbb{F}_{p^{n}}$-projective line given by

$$
\begin{equation*}
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1} \quad \text { with } \quad a_{i} \in \mathbb{F}_{p^{n}}, \tag{2.1}
\end{equation*}
$$

where $\lfloor m\rfloor$ denotes the integer part of the real number m. The genus $g(\mathcal{X})$ of \mathcal{X} is $\frac{(p-1) p^{l}}{2}$, where l is the largest integer with $a_{l} \neq 0$, see (see Proposition 3.7.8 in [20]). By the Hasse-Weil bound, the number of rational points $N(\mathcal{X})$ of \mathcal{X} satisfies

$$
1+p^{n}-2 g(\mathcal{X}) p^{\frac{n}{2}} \leq N(\mathcal{X}) \leq 1+p^{n}+2 g(\mathcal{X}) p^{\frac{n}{2}}
$$

i.e.

$$
\begin{equation*}
1+p^{n}-(p-1) p^{\frac{n+2 l}{2}} \leq N(\mathcal{X}) \leq 1+p^{n}+(p-1) p^{\frac{n+2 l}{2}} \tag{2.2}
\end{equation*}
$$

The curve is called maximal (respectively minimal) if it attains the upper (respectively lower) bound in (2.2).

By Hilbert's Theorem 90 , the number of rational points $N(\mathcal{X})$ of \mathcal{X} is given by

$$
N(\mathcal{X})=1+p N_{0}(Q),
$$

where $N_{0}(Q)$ is the number of solutions of $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)=0$ and $\operatorname{Tr}_{\mathrm{n}}(z)$ is the absolute trace of $z \in \mathbb{F}_{p^{n}}$.

As we will see, the determination of $N_{0}(Q)$ requires the exact evaluation of the character sum

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)}, \tag{2.3}
\end{equation*}
$$

called the Walsh coefficient of $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)$ at 0 . Only a few character sums of the form (2.3) have been determined explicitly. In $[12,5]$ the character sum (2.3) is determined for monomials $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(a x^{p^{i}+1}\right)$ for an odd prime p. Using these results, all maximal and minimal curves of the form $y^{p}-y=a x^{p^{i}+1}$ are classified. Some more results are known for $p=2$, see $[6,10,11,14,18,19]$. Moreover, results on the distribution of character sum can be found in $[2,8,9]$.

In the recent paper [1], some more classes of character sums of the form (2.3) for odd primes p with $\operatorname{gcd}(n, p)=1$ and coefficients a_{i} in the prime field have been evaluated, which induce some more classes of minimal and maximal curves. We summarize the main results of [1] in the following two propositions. By $v(m)$ we denote the 2 -adic valuation of an integer m.

Proposition 2.1. Let n be an even integer with $\operatorname{gcd}(n, p)=1$, and let k be an even divisor of n. The curve \mathcal{X} over $\mathbb{F}_{p^{n}}$ given by

$$
\mathcal{X}: y^{p}-y=c\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right), \quad c \in \mathbb{F}_{p}^{*}
$$

is maximal if and only if $p \equiv 3 \bmod 4$ and $n \equiv 2 \bmod 4$, and minimal if and only if $v(k)=v(n)$ and $p \equiv 1 \bmod 4$, or $v(k)=v(n), p \equiv 3 \bmod 4$ and $n \equiv 0 \bmod 4$.
The curve \mathcal{X} over $\mathbb{F}_{p^{n}}$ given by

$$
\mathcal{X}: y^{p}-y=c\left(x^{p^{\frac{k}{2}}+1}+x^{p^{\frac{3 k}{2}}+1}+\cdots+x^{p^{\frac{n-k}{2}}+1}\right), \quad c \in \mathbb{F}_{p}^{*}
$$

is minimal if and only if $v(k)<v(n)$ (and never maximal).
Using the results of Proposition 2.1, in [1] all maximal and minimal curves over $\mathbb{F}_{p^{n}}$ of the form (2.1) with coefficients in the prime field \mathbb{F}_{p}, p odd, and genus $\frac{p-1}{2} p^{(n-2) / 2}$ have been classified under the assumption that $\operatorname{gcd}(p, n)=1$. We can state the result as follows.
Proposition 2.2. Let n be an even integer with $\operatorname{gcd}(n, p)=1$, and let $\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}=$: $\mathcal{Q}(x)$ be a curve of genus $g(\mathcal{X})=\frac{p-1}{2} p^{(n-2) / 2}$, where coefficients a_{i} lie in the prime field \mathbb{F}_{p}. Then \mathcal{X} is maximal over $\mathbb{F}_{p^{n}}$ if and only if

- $n \equiv 2 \bmod 4, p \equiv 3 \bmod 4$, and $\mathcal{Q}(x)=c\left(x^{2}+2 x^{p^{2}+1}+\cdots+2 x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}$, and \mathcal{X} is minimal over $\mathbb{F}_{p^{n}}$ if and only if
- $n \equiv 2 \bmod 4, p \equiv 1 \bmod 4$, and $\mathcal{Q}(x)=c\left(x^{2}+2 x^{p^{2}+1}+\cdots+2 x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}$, or
- $n \equiv 0 \bmod 4$, and $\mathcal{Q}(x)=c\left(x^{p+1}+x^{p^{3}+1}+\cdots+x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}$.

In all proofs in [1] the condition $\operatorname{gcd}(n, p)=1$ plays a central role. The objective of this article is to analyze the analog curves for the more complicated case that $\operatorname{gcd}(n, p)>1$.

In Section 3 we present some results on the Walsh transform of quadratic functions, which will be needed in the sequel. In Section 4 we relate the number of points of a curve of the form (2.1) to the Walsh coefficient at zero of the corresponding quadratic function. In Section 5 we present some new classes of maximal and minimal curves of the form (2.1) for the case that
$\operatorname{gcd}(n, p)>1$. In particular, combining with the results in [1] on the case $\operatorname{gcd}(n, p)=1$, we classify all maximal and minimal curves of the form (2.1) obtained from quadratic functions of codimension 2 whose coefficients lie in the prime field \mathbb{F}_{p}.

3. Quadratic functions and Walsh transform

Let n be an integer and let p be an odd prime. Omitting linear and constant terms, a quadratic function Q, i.e. a function of algebraic degree 2 , from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} can be represented in trace form as

$$
\begin{equation*}
Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right) \tag{3.1}
\end{equation*}
$$

with $a_{0}, \ldots, a_{\lfloor n / 2\rfloor} \in \mathbb{F}_{p^{n}}$. If n is odd, this representation is unique. Observing that $x^{p^{n / 2}+1} \in$ $\mathbb{F}_{p^{n / 2}}$, we obtain that $\operatorname{Tr}_{n}\left(a_{n / 2} x^{p^{n / 2}+1}\right)=\operatorname{Tr}_{n / 2}\left(x^{p^{n / 2}+1} \operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p^{n / 2}}}}\left(a_{n / 2}\right)\right)$. Consequently, if n is even, then the coefficient $a_{n / 2}$ is only unique modulo the group $G=\left\{a \in \mathbb{F}_{p^{n}} \mid \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p^{n} / 2}}(a)=\right.$ $0\}$. In this article we are interested in curves of the form (2.1) obtained from quadratic functions Q, which attain the Hasse-Weil bound (2.2). In particular, we are only interested in the case that n is even.

For a function $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$, an element $a \in \mathbb{F}_{p^{n}}$ for which the derivative $D_{a} f(x)=f(x+$ $a)-f(x)$ is constant is called a linear structure of f. The set Ω of the linear structures of f is a subspace of $\mathbb{F}_{p^{n}}$ called the linear space of f, see [15, 21]. As easily seen, for all $a \in \Omega$ and $x \in \mathbb{F}_{p^{n}}$, we have $f(x+a)=f(x)+f(a)-f(0)$. In particular, f is linear on Ω if $f(0)=0$.

The Walsh coefficient $\widehat{Q}(b)$ of Q at the value $b \in \mathbb{F}_{p^{n}}$ is the character sum

$$
\widehat{Q}(b)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{f(x)-\operatorname{Tr}_{\mathrm{n}}(b x)}, \quad \epsilon_{p}=e^{2 \pi i / p}
$$

As well known, every quadratic function Q from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} is s-plateaued, i.e. for all $b \in \mathbb{F}_{p^{n}}$ we have $\widehat{Q}(b)=0$ or $|\widehat{Q}(b)|=p^{\frac{n+s}{2}}$ for a fixed integer $0 \leq s<n$, depending on Q. This integer s is exactly is the dimension (over \mathbb{F}_{p}) of the linear space Ω of Q, see [3].

The linear space of a quadratic function (3.1) is the kernel (in $\mathbb{F}_{p^{n}}$) of the linearized polynomial (cf. [12, 13])

$$
L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i}^{p^{n-i}} x^{p^{n-i}} .
$$

Consequently $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is s-plateaued if and only if

$$
\begin{equation*}
\operatorname{deg}\left(\operatorname{gcd}\left(L(x), x^{p^{n}}-x\right)\right)=p^{s} \tag{3.2}
\end{equation*}
$$

If all coefficients a_{i} of $Q(x)$ are in the prime field \mathbb{F}_{p}, then then the linearized polynomial corresponding to Q is

$$
\begin{equation*}
L(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}}+a_{i} x^{p^{n-i}} \tag{3.3}
\end{equation*}
$$

with the p-associate

$$
\begin{equation*}
A(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{i}+a_{i} x^{n-i} \tag{3.4}
\end{equation*}
$$

Using the concept of the p-associate we can then facilitate the determination of s in Equation 3.2 as

$$
s=\operatorname{deg}\left(\operatorname{gcd}\left(A(x), x^{n}-1\right)\right),
$$

see also $[1,13,17]$. We observe that $A(x)=x^{d} h(x)$ for a non-negative integer d and a selfreciprocal polynomial h of degree $n-2 d$. Consequently, if $A(x)$ is the associate of a linearized polynomial corresponding to an s-plateaued function Q with coefficients in \mathbb{F}_{p}, then

$$
\begin{aligned}
\operatorname{gcd}\left(A(x), x^{n}-1\right)= & \frac{x^{n}-1}{f(x)} \\
\text { with } \quad & f(x)=(x-1)^{\delta}\left(1+b_{1} x+\cdots+b_{1} x^{n-s-1-\delta}+x^{n-s-\delta}\right), \delta \in\{0,1\} .
\end{aligned}
$$

The polynomial $A(x)$ can then be written as
(3.5) $A(x)=(x-1)^{(1-\delta)} \frac{x^{n}-1}{f(x)} g(x)$,
where $\quad g(x)=c_{0}+c_{1} x+\cdots+c_{1} x^{n-s-2+\delta}+c_{0} x^{n-s-1+\delta}$ with $\operatorname{gcd}(f(x), g(x))=1$.
An important notion for functions from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} is extended affine equivalence (EA-equivalence). Two functions f, g from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} are called EA-equivalent if there exist a linearized permutation polynomial $\mathcal{P}(x)$, a linearized polynomial $\mathcal{L}(x)$ and constants $a, e \in \mathbb{F}_{p}, d \in \mathbb{F}_{p^{n}}$ such that $g(x)=a f(\mathcal{P}(x)+d)+\mathcal{L}(x)+e$.
In the framework of the isomorphic vector space \mathbb{F}_{p}^{n}, the Walsh transform of a function $f: \mathbb{F}_{p}^{n} \rightarrow$ \mathbb{F}_{p} is given by

$$
\widehat{f}(b)=\sum_{x \in \mathbb{F}_{p}^{n}} \epsilon_{p}^{f(x)-b \cdot x}, \quad b \in \mathbb{F}_{p}^{n},
$$

where $b \cdot x$ denotes the dot product in \mathbb{F}_{p}^{n}. In this framework two functions f, g from \mathbb{F}_{p}^{n} to \mathbb{F}_{p} are EA-equivalent if there exist an invertible $n \times n$-matrix P over \mathbb{F}_{p}, elements $\mathbf{u}, \mathbf{v} \in \mathbb{F}_{p}^{n}$ and constants $a, e \in \mathbb{F}_{p}$ such that $g(\mathbf{x})=a f(P \mathbf{x}+\mathbf{u})+\mathbf{v} \cdot \mathbf{x}+e$ for all $\mathbf{x} \in \mathbb{F}_{p}^{n}$.
It is well known that Walsh spectrum (value set of the Walsh transform) and algebraic degree are invariant under EA-equivalence. In particular affine coordinate transformations do not change the Walsh spectrum. More precisely, the effect of coordinate transformations is given as follows.
$\mathrm{T} 1: ~ f \widehat{(\mathbf{x + u})}(\mathbf{b})=\epsilon_{p}^{\mathbf{b} \cdot \mathbf{u}} \widehat{f}(\mathbf{b})$,

T2: if $P \in \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ then $\widehat{f(P \mathbf{x})}(\mathbf{b})=\widehat{f}\left(\left(P^{-1}\right)^{T} \mathbf{b}\right)$, where P^{T} denotes the transpose of the matrix P.

4. Walsh transform and the number of points

Objective in this section is to relate the number of rational points $N(\mathcal{X})$ of \mathcal{X} given as in (2.1) to the Walsh coefficient $\widehat{Q}(0)$ of $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)$ at 0 . This will be used in Section 5 to obtain some classes of maximal and minimal curves. We choose here a different approach than in [1] based on character sums. We first show that for odd p a quadratic function Q without an affine term satisfies $\widehat{Q}(0)=\zeta p^{(n+s) / 2}$ for some $\zeta \in\{1,-1, i,-i\}$. In particular this shows $\widehat{Q}(0) \neq 0$.

Lemma 4.1. For an integer n and an odd prime p, let $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right), a_{i} \in \mathbb{F}_{p^{n}}$. Then

$$
\widehat{Q}(0)= \begin{cases} \pm p^{\frac{n+s}{2}} & \text { if } n-s \text { even, or } n-s \text { odd and } p \equiv 1 \bmod 4 \\ \pm \text { ip } p^{\frac{n+s}{2}} & \text { if } n-s \text { odd and } p \equiv 3 \bmod 4\end{cases}
$$

for some integer $0 \leq s \leq n-1$.
Proof. We may consider the isomorphic vector space \mathbb{F}_{p}^{n}. Any quadratic function (without a linear or constant term) from \mathbb{F}_{p}^{n} to \mathbb{F}_{p} can be transformed by an affine coordinate transformation to a diagonal form

$$
Q(x)=d_{1} x_{1}^{2}+\cdots+d_{n-s} x_{n-s}^{2}
$$

for some integer $0 \leq s \leq n-1$, and $d_{i} \neq 0$ for $i=1, \ldots, n-s$, see [16, Section 6.2]. By Properties T 1 and T2, an affine coordinate transformation does not change the Walsh coefficient at 0 . For the function $q(x)=d x^{2}$ on \mathbb{F}_{p}, by [16, Theorem 5.33] and [16, Theorem 5.15] we have

$$
\widehat{Q}(0)=\sum_{x \in \mathbb{F}_{p}} \epsilon_{p}^{d x^{2}}=\eta(d) G\left(\eta, \chi_{1}\right)= \begin{cases}\eta(d) p^{\frac{1}{2}} & \text { if } p \equiv 1 \bmod 4, \tag{4.1}\\ \eta(d) i p^{\frac{1}{2}} & \text { if } p \equiv 3 \bmod 4\end{cases}
$$

where χ_{1} is the canonical additive character of \mathbb{F}_{p}, η denotes the quadratic character of \mathbb{F}_{p}, and $G\left(\eta, \chi_{1}\right)$ is the associated Gaussian sum. This shows the correctness for $n=1$.
For two functions $g_{1}: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ and $g_{2}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$, the direct sum $g_{1} \oplus g_{2}$ from $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{m}=\mathbb{F}_{p}^{m+n}$ to \mathbb{F}_{p} is defined by $\left(g_{1} \oplus g_{2}\right)(x, y)=g_{1}(x)+g_{2}(y)$. As easily seen,

$$
\begin{equation*}
\left(\widehat{g_{1} \oplus g_{2}}\right)(u, v)=\widehat{g_{1}}(u) \widehat{g_{2}}(v) . \tag{4.2}
\end{equation*}
$$

The assertion for arbitrary n follows then from (4.1), applying (4.2) recursively to $q_{i}\left(x_{i}\right)=d_{i} x_{i}^{2}$, $1 \leq i \leq n$, together with the simple observation that for $n-s+1 \leq i \leq n$, where $d_{i}=0$, we have $\widehat{q_{i}}(0)=p$.

Let $f \in \mathbb{F}_{p^{n}}[x]$, and let m be an integer with $\operatorname{gcd}(m, n)=t$. Then, following the arguments in [7], for the number $N(f)$ of solutions $(x, y) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}}$ of $y^{p^{m}}-y=f(x)$ we have

$$
\begin{align*}
p^{n} N(f) & =\sum_{a, x, y \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{\operatorname{Tr}_{\mathrm{n}}\left(a\left(f(x)-\left(y^{p^{m}}-y\right)\right)\right)}=\sum_{a, x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{\operatorname{Tr}_{\mathrm{n}}(a f(x))} \sum_{y \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{\operatorname{Tr}_{\mathrm{n}}\left(a y-a p^{p^{m}}\right)} \\
& =\sum_{a, x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{\operatorname{Tr}_{\mathrm{n}}(a f(x))} \sum_{y \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{\operatorname{Tr}_{\mathrm{n}}\left(y^{p^{m}}\left(a^{p^{m}}-a\right)\right)}=p^{n} \sum_{a \in \mathbb{F}_{p^{t}}} \sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{\operatorname{Tr}_{\mathrm{n}}(a f(x))}, \tag{4.3}
\end{align*}
$$

where in the last step we used that $a^{p^{m}}-a$ vanishes if and only if $a \in \mathbb{F}_{p^{t}}=\mathbb{F}_{p^{m}} \cap \mathbb{F}_{p^{n}}$. We use Equation 4.3 to express the number of rational points over $\mathbb{F}_{p^{n}}$ of a curve

$$
\mathcal{X}: y^{q}-y=\sum_{i=0}^{l} a_{i} x^{q^{i}+1}, \quad a_{i} \in \mathbb{F}_{p^{n}}, 0 \leq i \leq l
$$

with $q=p^{m}$ for any divisor m of n. In the proof of the subsequent Theorem we will use the following Lemma, see [4, Theorem 1].

Lemma 4.2. For a divisor m of n and $q=p^{m}$, a quadratic function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} of the form $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n /(2 m)\rfloor} b_{i} x^{q^{i}+1}\right), b_{i} \in \mathbb{F}_{q}$, is s-plateaued for an integer $0 \leq s<n$ which is divisible by m. For a nonzero element $a \in \mathbb{F}_{q}$, the function $Q_{a}(x)$ given by $Q_{a}(x)=$ $\operatorname{Tr}_{n}\left(a \sum_{i=0}^{\lfloor n /(2 m)\rfloor} b_{i} x^{q^{i}+1}\right)$ is also s-plateaued with the same integer s, and

$$
\widehat{Q_{a}}(b)=\mu(a)^{\frac{n-s}{m}} \widehat{Q}(b), \quad b \in \mathbb{F}_{p^{n}}
$$

where μ denotes the quadratic character in \mathbb{F}_{q}.
Theorem 4.3. For an odd prime p and a divisor m of n let $q=p^{m}$, and let $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{l} a_{i} x^{q^{i}+1}\right)$, $l m \leq n / 2$, be an s-plateaued quadratic function from $\mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$. Set $k:=\frac{n-s}{m}$. Then the number of rational points of

$$
\mathcal{X}: y^{q}-y=\sum_{i=0}^{l} a_{i} x^{q^{i}+1}
$$

over $\mathbb{F}_{p^{n}}$ is given by

$$
N(\mathcal{X})=1+p N_{0}(Q)= \begin{cases}1+p^{n}+(q-1) \widehat{Q}(0) & \text { if } k \text { is even }, \\ 1+p^{n} & \text { if } k \text { is odd } .\end{cases}
$$

Proof. Let $N(Q)$ be the number of solutions in $\mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}}$ of $y^{q}-y=\sum_{i=0}^{l} a_{i} x^{q^{i}+1}$, and hence $N(\mathcal{X})=1+N(Q)$. Denoting the set of nonzero squares in \mathbb{F}_{q} by $S q$ and the set of non-squares in \mathbb{F}_{q} by $N S q$, by Equation 4.3 we have

$$
N(Q)=\sum_{a \in \mathbb{F}_{p^{m}}} \sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q_{a}(x)}=p^{n}+\sum_{a \in S q} \widehat{Q_{a}}(0)+\sum_{a \in N S q} \widehat{Q_{a}}(0) .
$$

First suppose that $k=\frac{n-s}{m}$ is even. Then by Lemma 4.2 we have $\widehat{Q_{a}}(0)=\widehat{Q}(0)$ for all $a \neq 0$. Consequently, $N(Q)=p^{n}+(q-1) \widehat{Q}(0)$ and the statement for k even follows.

If $k=\frac{n-s}{m}$ is odd, then again by Lemma 4.2, $\widehat{Q_{a}}(0)=\widehat{Q}(0)$ if a is a nonzero square in \mathbb{F}_{p}, and $\widehat{Q_{a}}(0)=-\widehat{Q}(0)$ if a is a non-square in \mathbb{F}_{p}. Hence $N(Q)=p^{n}$.

Combining Lemma 4.1 and Theorem 4.3 we get the next corollary.
Corollary 4.4. For an odd prime p and a divisor m of n, let $q=p^{m}$, and let $Q(x)=$ $\operatorname{Tr}_{n}\left(\sum_{i=0}^{l} a_{i} x^{q^{i}+1}\right)$, lm $\leq n / 2$, be an s-plateaued quadratic function from $\mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$. The number of $\mathbb{F}_{p^{n}}$-rational points of the curve

$$
\mathcal{X}: y^{q}-y=\sum_{i=0}^{l} a_{i} x^{q^{i}+1}
$$

is given by

$$
N(\mathcal{X})= \begin{cases}1+p^{n}+\Lambda\left(p^{m}-1\right) p^{\frac{n+s}{2}} & \text { if }(n-s) / m \text { is even }, \\ 1+p^{n} & \text { if }(n-s) / m \text { is odd },\end{cases}
$$

where

$$
\Lambda=\left\{\begin{aligned}
1 & \text { if } \widehat{Q}(0)=p^{\frac{n+s}{2}}, \\
-1 & \text { if } \widehat{Q}(0)=-p^{\frac{n+s}{2}} .
\end{aligned}\right.
$$

Remark 4.5. Lemma 4.1 implies that $\widehat{Q}(0) \neq 0$ if p is odd and Q does not contain a linear term. However, if the quadratic function contains a linear term, then we may have $\widehat{Q}(0)=0$, i.e. the function Q is balanced. In this case $N(\mathcal{X})=1+p^{n}$.

Since we are particularly interested in maximal (respectively minimal) curves $\mathcal{X}: y^{p}-y=$ $\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}$ of the form (2.1), we consider quadratic functions $Q: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ with even n. The subsequent corollary describes the conditions on Q required to obtain maximal (respectively minimal) curves.
Corollary 4.6. Let $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}\right)$ be an s-plateaued quadratic function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}, and suppose that $l \leq n / 2$ is the largest integer for which a_{l} is non-zero. Then

$$
\mathcal{X}: y^{p}-y=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{i} x^{p^{i}+1}
$$

is a maximal (respectively minimal) curve over $\mathbb{F}_{p^{n}}$ if and only if n is even, $s=2 l$ and $\Lambda=1$ (respectively $\Lambda=-1$).

Proof. The statement follows from Corollary 4.4 and Inequality 2.2 with $g(\mathcal{X})=\frac{p-1}{2} p^{l}$.
Remark 4.7. If \mathcal{X} is maximal or minimal, then the dimension s of the linear space of Q must be even.

Corollary 4.8. Let $Q(x)=\operatorname{Tr}_{n}\left(\sum_{i=0}^{n / 2} a_{i} x^{p^{i}+1}\right)$ be an s-plateaued function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}, and set $k:=n-s$. The curve $\mathcal{X}: y^{p}-y=\sum_{i=0}^{n / 2} a_{i} x^{p^{i}+1}$ over $\mathbb{F}_{p^{n}}$ is maximal or minimal if and only if

$$
a_{\frac{n}{2}}=a_{\frac{n}{2}-1}=\cdots=a_{\frac{n-k}{2}+1}=0 \text { and } a_{\frac{n-k}{2}} \neq 0 .
$$

Proof. The statement follows from Corollary 4.6 with $l=\frac{n-k}{2}$.
We remark that $a_{\frac{n}{2}}=a_{\frac{n}{2}-1}=\cdots=a_{\frac{n-k}{2}+1}=0$ together with the Hasse-Weil bound already implies $a_{\frac{n-k}{2}} \neq 0$.

5. Maximal and minimal curves

In this section we consider curves over $\mathbb{F}_{p^{n}}$ of the form $\mathcal{X}: y^{p}-y=\sum a_{i} x^{p^{i}+1}$ with coefficients a_{i} in the prime field \mathbb{F}_{p} and $\operatorname{gcd}(n, p)>1$. Our results complement the results of [1], where similar curves for the easier case that $\operatorname{gcd}(n, p)=1$ have been considered. We first completely characterize all maximal and minimal curves obtained from quadratic functions $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum a_{i} x^{p^{i}+1}\right)$ of codimension 2, i.e. quadratic functions with linear space of dimension $s=n-2$. Then we presents some more infinite classes of maximal and minimal curves of various genus, i.e. curves obtained from quadratic functions of various codimension.

We start with a lemma which excludes many curves from being maximal or minimal. The proof of the lemma is also given implicitly in the proof of Theorem 5.5 in [1] on curves obtained from quadratic functions of codimension 2.

Lemma 5.1. Let $\mathcal{X}: y^{p}-y=\sum_{i=0}^{l} a_{i} x^{p^{i}+1}$ with coefficients in the prime field \mathbb{F}_{p} and $l \leq n / 2$. Let $A(x)$ be the p-associate (3.4) of the linearized polynomial (3.3) of $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{l} a_{i} x^{p^{i}+1}\right)$. If the curve \mathcal{X} over $\mathbb{F}_{p^{n}}$ is maximal or minimal, then

$$
\operatorname{gcd}\left(A(x), x^{n}-1\right)=\frac{x^{n}-1}{f(x)}
$$

for a polynomial $f(x)$ with $f(1)=0$.
Proof. Let $\operatorname{gcd}\left(x^{n}-1, A(x)\right)=\left(x^{n}-1\right) / f(x)$ for a polynomial $f(x)$ of (even) degree k, which is not divisible by $x-1$. Then

$$
A(x)=(x-1) \frac{x^{n}-1}{f(x)} g(x)
$$

with

$$
f(x)=b_{0}+b_{1} x+\cdots+b_{1} x^{k-1}+b_{0} x^{k}, \quad g(x)=c_{0}+c_{1} x+\cdots+c_{1} x^{k-2}+c_{0} x^{k-1} \in \mathbb{F}_{p}[x]
$$

and $\operatorname{gcd}(f(x), g(x))=1$. Consequently, we have the following equality.

$$
\begin{equation*}
A(x)\left(b_{0}+b_{1} x+\cdots+b_{1} x^{k-1}+b_{0} x^{k}\right)=\left(x^{n+1}-x^{n}-x+1\right)\left(c_{0}+c_{1} x+\cdots+c_{1} x^{k-2}+c_{0} x^{k-1}\right) \tag{5.1}
\end{equation*}
$$

By Corollary 4.8, the corresponding curve is maximal or minimal if and only if

$$
A(x)=a_{0}+a_{1} x+\cdots+a_{\frac{n-k}{2}} x^{\frac{n-k}{2}}+a_{\frac{n-k}{2}} x^{\frac{n+k}{2}}+\cdots+a_{1} x^{n-1}+a_{0} x^{n} \text { with } a_{\frac{n-k}{2}} \neq 0
$$

Comparing the coefficients of $x^{\frac{n+k}{2}}$ in Equality 5.1, we then obtain that

$$
2 a_{\frac{n-k}{2}} b_{0}=0
$$

Since $f(x)$ has degree k and $a_{\frac{n-k}{2}} \neq 0$, we get a contradiction.
We consider now quadratic functions $Q(x)$ (with coefficients in the prime field \mathbb{F}_{p}) of codimension 2, i.e. the associate $A(x)$ of the corresponding linearized polynomial satisfies $\operatorname{gcd}\left(A(x), x^{n}-1\right)=$ $\left(x^{n}-1\right) / f(x)$ for a polynomial $f(x)$ of degree 2 .

Theorem 5.2. Let p be an odd prime with $\operatorname{gcd}(n, p)>1$, and let $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{l} a_{i} x^{p^{i}+1}\right)$ be a quadratic function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} with coefficients in \mathbb{F}_{p}, for which the linear space has dimension $n-2$. The curve $\mathcal{X}: y^{p}-y=\sum_{i=0}^{l} a_{i} x^{p^{i}+1}$ over $\mathbb{F}_{p^{n}}$ is maximal if and only if

- $\mathcal{X}: y^{p}-y=c\left(x^{2}+2 x^{p^{2}+1}+\cdots+2 x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}, n \equiv 2 \bmod 4$ and $p \equiv 3 \bmod 4$.

The curve $\mathcal{X}: y^{p}-y=\sum_{i=0}^{l} a_{i} x^{p^{i}+1}$ over $\mathbb{F}_{p^{n}}$ is minimal if and only if

- $\mathcal{X}: y^{p}-y=c\left(x^{2}+2 x^{p^{2}+1}+\cdots+2 x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}, n \equiv 2 \bmod 4$ and $p \equiv 1 \bmod 4$, or - $\mathcal{X}: y^{p}-y=c\left(x^{p+1}+x^{p^{3}+1}+\cdots+x^{p^{\frac{n}{2}-1}+1}\right), c \in \mathbb{F}_{p}^{*}$ and $n \equiv 0 \bmod 4$.

Proof. By Lemma 5.1, $\operatorname{gcd}\left(A(x), x^{n}-1\right)=\left(x^{n}-1\right) / f(x)$ for a quadratic polynomial $f(x)$ which is divisible by $x-1$. Hence we must have $f(x)=x^{2}-1$. By (3.5), the polynomial $A(x)$ is then of the form
(a) $A(x)=c x \frac{x^{n}-1}{x^{2}-1}$ for some $c \in \mathbb{F}_{p}^{*}$, or
(b) $A(x)=c \frac{x^{n}-1}{x^{2}-1}\left(x^{2}+a x+1\right)$ for some $a \neq \pm 2$ and $c \in \mathbb{F}_{p}^{*}$.

First we consider the case (a). In this case

$$
A(x)= \begin{cases}c\left(x^{n-1}+x^{n-3}+\cdots+x^{n / 2+2}+x^{n / 2}+x^{n / 2-2}+\cdots+x^{3}+x\right) & \text { if } n \equiv 2 \quad \bmod 4 \\ c\left(x^{n-1}+x^{n-3}+\cdots+x^{n / 2+1}+x^{n / 2-1}+\cdots+x^{3}+x\right) & \text { if } n \equiv 0 \quad \bmod 4\end{cases}
$$

and hence the corresponding quadratic function is given by

$$
Q(x)=\left\{\begin{array}{lll}
\operatorname{Tr}_{n}\left(c\left(x^{p+1}+x^{p^{3}+1}+\cdots+x^{p^{n / 2-2}+1}+(1 / 2) x^{p^{n / 2}+1}\right)\right) & \text { if } n \equiv 2 & \bmod 4 \\
\operatorname{Tr}_{n}\left(c\left(x^{p+1}+x^{p^{3}+1}+\cdots+x^{p^{n / 2-1}+1}\right)\right) & \text { if } n \equiv 0 & \bmod 4
\end{array}\right.
$$

By Corollary 4.8, we obtain a maximal or minimal curve from $Q(x)$ only for $n \equiv 0 \bmod 4$. To determine whether the resulting curve is maximal or minimal, we have to calculate $\widehat{Q}(0)$ explicitly, for $Q(x)=\operatorname{Tr}_{n}\left(c\left(x^{p+1}+x^{p^{3}+1}+\cdots+x^{p^{n / 2-1}+1}\right)\right)$. We note by Lemma 4.2 the sign in $\widehat{Q}(0)$ is independent from the constant $c \in \mathbb{F}_{p}^{*}$ since $n-2$ is even. We therefore may without loss of generality choose $c=1$. Then the linearized polynomial corresponding to Q is given by

$$
L(x)=x^{p^{n-1}}+x^{p^{n-3}}+\cdots+x^{p^{n / 2+1}}+x^{p^{n / 2-1}}+\cdots+x^{p^{3}}+x^{p}
$$

Since we suppose that $\operatorname{gcd}(n, p)>1$, we put $n=m p^{e}, e \geq 1$, and $\operatorname{gcd}(p, m)=1$. Then we can write $L(x)$ as

$$
\begin{aligned}
L(x) & =\sum_{k=0}^{(m-2) / 2} x^{p^{1+2 k p^{e}}}+x^{p^{3+2 k p^{e}}}+\cdots+x^{p^{2 p^{e}-1+2 k p^{e}}} \\
& =\sum_{k=0}^{(m-2) / 2}\left(x^{p}+x^{p^{3}}+\cdots+x^{p^{2 p^{e}-1}}\right)^{p^{2 k p^{e}}} .
\end{aligned}
$$

For an element $x \in \mathbb{F}_{p^{2 p^{e}}}$ we have

$$
L(x)=(m / 2)\left(x+x^{p^{2}}+\cdots+x^{p^{2 p^{e}-2}}\right)^{p} .
$$

Set $\tilde{L}(x)=x+x^{p^{2}}+\cdots+x^{p^{p^{e}-2}}$ so that $L(x)=(m / 2) \tilde{L}(x)^{p}$ for $x \in \mathbb{F}_{p^{2 p^{e}}}$. Clearly, $|\operatorname{Ker}(\tilde{L})| \leq$ $\operatorname{deg} \tilde{L}=p^{2 p^{e}-2}$. (In fact, $x^{p^{2 p^{e}}}-x=\left(x^{p^{2}}-x\right) \circ \tilde{L}(x)$, and hence the zeros of \tilde{L} lie in $\mathbb{F}_{p^{2 p^{e}}}$, which implies that $|\operatorname{Ker}(\tilde{L})|=\operatorname{deg} \tilde{L}=p^{2 p^{e}-2}$.) We can pick $\alpha \in \mathbb{F}_{p^{2 p^{e}}}$ such that $\tilde{L}(\alpha) \neq 0$, and hence $L(\alpha) \neq 0$. Then, since $L(t x)=(m / 2) t^{p} \tilde{L}(x)^{p}$ for all $t \in \mathbb{F}_{p^{2}}$ and $x \in \mathbb{F}_{p^{2 p^{e}}}$, the 2-dimensional vector space $\Omega^{c}:=\alpha \mathbb{F}_{p^{2}}$ satisfies $\Omega \cap \Omega^{c}=\{0\}$, where $\Omega:=\operatorname{Ker}(L)$ is the linear space of Q. Consequently, Ω^{c} is a complement of Ω in $\mathbb{F}_{p^{n}}$.

To determine the Walsh coefficient of Q at 0 , we write $x \in \mathbb{F}_{p^{n}}$ as $x=y+z$ with $y \in \Omega$ and $z \in \Omega^{c}$, and take an advantage of the fact that Q is linear on Ω. We have

$$
\widehat{Q}(0)=\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{Q(x)}=\left(\sum_{y \in \Omega} \epsilon_{p}^{Q(y)}\right)\left(\sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)}\right)= \begin{cases}p^{n-2} \sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)} & \text { if } Q(y)=0 \text { for all } y \in \Omega \\ 0 & \text { otherwise }\end{cases}
$$

By Lemma 4.1 $\widehat{Q}(0) \neq 0$, so we conclude that $\widehat{Q}(0)=p^{n-2} \sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)}$.
For $z \in \Omega^{c}$ with $z=\alpha t, t \in \mathbb{F}_{p^{2}}$, we get

$$
\begin{aligned}
Q(z) & =\operatorname{Tr}_{n}\left(\alpha t\left((\alpha t)^{p}+(\alpha t)^{p^{3}}+\cdots+(\alpha t)^{p^{n / 2-1}}\right)\right) \\
& =\operatorname{Tr}_{n}\left(t^{p+1}\left(\alpha^{p+1}+\alpha^{p^{3}+1}+\cdots+\alpha^{p^{n / 2-1}+1}\right)\right) \\
& =t^{p+1} \operatorname{Tr}_{n}\left(\alpha^{p+1}+\alpha^{p^{3}+1}+\cdots+\alpha^{p^{p / 2-1}+1}\right) \\
& =t^{p+1} Q(\alpha) .
\end{aligned}
$$

In the last equality we used that $t^{p+1} \in \mathbb{F}_{p}$ if $t \in \mathbb{F}_{p^{2}}$. For the Walsh coefficient of Q at 0 we then obtain

$$
\begin{aligned}
\widehat{Q}(0) & =p^{n-2} \sum_{t \in \mathbb{F}_{p^{2}}} \epsilon_{p}^{Q(\alpha) t^{p+1}}=p^{n-2}\left(1+(p+1) \sum_{y \in \mathbb{F}_{p} \backslash\{0\}}\left(\epsilon_{p}^{Q(\alpha)}\right)^{y}\right) \\
& =p^{n-2}(1+(p+1)(-1))=-p^{n-1} .
\end{aligned}
$$

Note that in the last step we can exclude that $Q(\alpha)=0$, otherwise we get $\widehat{Q}(0)=p^{n}$, a contradiction. This finishes the proof for the case (a).

Now we consider the case (b), where $A(x)=c\left(x^{n-2}+x^{n-4}+\cdots+x^{2}+1\right)\left(x^{2}+a x+1\right)$ for some $a \neq \pm 2$ and $c \in \mathbb{F}_{p}^{*}$. Again we can without loss of generality choose $c=1$. In order to get a maximal or minimal curve, the coefficient $a_{n / 2}$ of $x^{n / 2}$ must be zero by Corollary 4.8. This holds if and only if $n \equiv 2 \bmod 4$ and

$$
A(x)=\left(x^{n-2}+x^{n-4}+\cdots+x^{n / 2+1}+x^{n / 2-1}+\cdots+x^{2}+1\right)\left(x^{2}+1\right) .
$$

The corresponding linearized polynomial is then given by

$$
L(x)=x^{p^{n}}+2 x^{p^{n-2}}+\cdots+2 x^{p^{n / 2+3}}+2 x^{p^{n / 2+1}}+\cdots+2 x^{p^{4}}+2 x^{p^{2}}+x .
$$

Since $x^{p^{n}}=x$ for an element $x \in \mathbb{F}_{p^{n}}$, we can evaluate $L(x)$ as

$$
\begin{aligned}
L(x)= & 2\left(x+x^{p^{2}}+\cdots+x^{p^{2 p^{e}-2}}\right)+2\left(x^{p^{2 p^{e}}}+x^{p^{2 p^{e}+2}}+\cdots+x^{p^{4 p^{e}-2}}\right) \\
& +\cdots+2\left(x^{p^{(m-2) p^{e}}}+x^{p^{(m-2) p^{e}+2}}+\cdots+x^{p^{n-2}}\right) .
\end{aligned}
$$

In this representation each parenthesis contains exactly p^{e} summands. We observe that for an element x in $\mathbb{F}_{p^{2 p^{e}}}$, we have $L(x)=m\left(x+x^{p^{2}}+\cdots+x^{p^{2 p^{e}-2}}\right)=m \tilde{L}(x)$. As observed above, the kernel $\operatorname{Ker}(\tilde{L})$ in $\mathbb{F}_{p^{n}}$ of \tilde{L} lies in $\mathbb{F}_{p^{2 p^{e}}}$ and has cardinality $p^{2 p^{e}-2}$, and there exists an element $\alpha \in \mathbb{F}_{p^{2 p^{e}}}$ such that $\tilde{L}(\alpha) \neq 0$, hence $L(\alpha) \neq 0$. Since $L(t \alpha)=m \tilde{L}(t \alpha)=m t \tilde{L}(\alpha)$ for all $t \in \mathbb{F}_{p^{2}}$, the 2-dimensional vector space $\Omega^{c}=\alpha \mathbb{F}_{p^{2}}$ over \mathbb{F}_{p} is again a complement in $\mathbb{F}_{p^{n}}$ of Ω, the linear space of Q. As in the case (a),

$$
\widehat{Q}(0)=p^{n-2} \sum_{z \in \Omega^{c}} \epsilon_{p}^{Q(z)}=p^{n-2} \sum_{t \in \mathbb{F}_{p^{2}}} \epsilon_{p}^{Q(t \alpha)} .
$$

We have

$$
\begin{aligned}
Q(t \alpha) & =(m / 2) \operatorname{Tr}_{2 p^{e}}\left((t \alpha)^{2}+2(t \alpha)^{p^{2}+1}+2(t \alpha)^{p^{4}+1}+\cdots+2(t \alpha)^{p^{n / 2-1}+1}\right) \\
& =(m / 2) \operatorname{Tr}_{2 p^{e}}\left(t^{2}\left(\alpha^{2}+2 \alpha^{p^{2}+1}+2 \alpha^{p^{4}+1}+\cdots+2 \alpha^{p^{n / 2-1}+1}\right)\right) \\
& =(m / 2) \operatorname{Tr}_{2}\left(\beta t^{2}\right),
\end{aligned}
$$

where $\beta=\operatorname{Tr}_{\mathbb{F}_{p^{2 p^{e}}} / \mathbb{F}_{p^{2}}}\left(\alpha^{2}+2 \alpha^{p^{2}+1}+2 \alpha^{p^{4}+1}+\cdots+2 \alpha^{p^{n / 2-1}+1}\right)$. If $\beta=0$ then

$$
\widehat{Q}(0)=p^{n-2} \sum_{t \in \mathbb{F}_{p^{2}}} \epsilon_{p}^{Q(t \alpha)}=p^{n-2} \sum_{t \in \mathbb{F}_{p^{2}}}\left(\epsilon_{p}^{(m / 2)}\right)^{\operatorname{Tr}_{2}\left(\beta t^{2}\right)}=p^{n}
$$

which is a contradiction. Hence $\beta \neq 0$, and

$$
\widehat{Q}(0)=p^{n-2} \sum_{t \in \mathbb{F}_{p^{2}}} \epsilon_{p}^{Q(t \alpha)}=p^{n-2} \sum_{t \in \mathbb{F}_{p^{2}}}\left(\epsilon_{p}^{(m / 2)}\right)^{\operatorname{Tr}_{2}\left(\beta t^{2}\right)}=(-1)^{\frac{p+1}{2}} \eta(\beta) p^{n-1},
$$

where last equality follows from Corollary 3 in [12].
As a final step we determine the quadratic character $\eta(\beta)$ of $\beta \in \mathbb{F}_{p^{2}}$. Since $\mathbb{F}_{p^{2 p^{e}}}$ is the compositum of $\mathbb{F}_{p^{p^{e}}}$ and $\mathbb{F}_{p^{2}}$, and $\tilde{L}(t \gamma)=t \tilde{L}(\gamma)$ for all $t \in \mathbb{F}_{p^{2}}$ and $\gamma \in \mathbb{F}_{p^{p^{e}}}$, we cannot have
$\tilde{L}(\gamma)=0$ for all $\gamma \in \mathbb{F}_{p^{p^{e}}}$. Hence without loss of generality we can choose $\alpha \in \mathbb{F}_{p^{p^{e}}}$. Using the fact that $\alpha^{p^{p^{e}}}=\alpha$, for any non-negative integer j we get

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{F}_{p^{2 p^{e}} / \mathbb{F}_{p^{2}}}}\left(\alpha^{j}\right) & =\alpha^{j}+\alpha^{j p^{2}}+\alpha^{j p^{4}}+\cdots+\alpha^{j p^{p^{e}-1}}+\alpha^{j p^{p^{e}+1}}+\cdots+\alpha^{j p^{2 p^{e}-2}} \\
& =\alpha^{j}+\alpha^{j p^{2}}+\alpha^{j p^{4}}+\cdots+\alpha^{j p^{p^{e}-1}}+\alpha^{j p}+\cdots+\alpha^{j p^{p^{e}-2}} \\
& =\alpha^{j}+\alpha^{j p}+\alpha^{j p^{2}}+\cdots+\alpha^{j p^{p^{e}-2}}+\alpha^{j p^{p^{e}-1}} \\
& =\operatorname{Tr}_{p^{e}}\left(\alpha^{j}\right) .
\end{aligned}
$$

In particular this shows that $\beta \in \mathbb{F}_{p}^{*}$, and therefore β is a square in $\mathbb{F}_{p^{2}}$. As a consequence, $\widehat{Q}(0)=(-1)^{\frac{p+1}{2}} p^{n-1}$.

Remark 5.3. Theorem 5.2 is considerably harder to obtain than the analog theorem in [1] for the case that $\operatorname{gcd}(n, p)=1$. Together with the result on the case $\operatorname{gcd}(n, p)=1$, Theorem 5.2 completely classifies all maximal and minimal curves obtained from quadratic functions in odd characteristic p of codimension 2 and coefficients in the prime field \mathbb{F}_{p}. Maximal and minimal curves obtained from quadratic functions in characteristic 2 of codimension 2 and coefficients in \mathbb{F}_{2} are characterized in [10].

We finish this section with a generalization of Theorem 5.2 to quadratic fucnctions for which the p-associate $A(x)$ satisfies $\operatorname{gcd}\left(A(x), x^{n}-1\right)=\left(x^{n}-1\right) /\left(x^{k}-1\right)$ for an (even) divisor k of n. As a result we obtain infinite classes of maximal and minimal curves obtained from quadratic function with various codimenson k, respectively curves of various genus. The easier case that $\operatorname{gcd}(n, p)=1$ has been dealt with in [1, Theorem 5.3]. In fact, the proof of Theorem 5.3 in [1] holds more generally for the case that $\operatorname{gcd}(n / k, p)=1$. Hence we here suppose that $\operatorname{gcd}(n / k, p)>1$.

Theorem 5.4. Let n be an even integer divisible by p and let k be an even divisor of n with $\operatorname{gcd}(n / k, p)>1$. Let $Q(x)=\operatorname{Tr}_{\mathrm{n}}\left(\sum_{i=0}^{l} a_{i} x^{p^{i}+1}\right)$ be a quadratic function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} with coefficients in \mathbb{F}_{p} for which the associate $A(x) \in \mathbb{F}_{p}[x]$ of the corresponding linearized polynomial $L(x)$ satisfies

$$
\operatorname{gcd}\left(A(x), x^{n}-1\right)=\frac{x^{n}-1}{x^{k}-1} .
$$

Then the curve $\mathcal{X}: y^{p}-y=\sum_{i=0}^{l} a_{i} x^{p^{i}+1}$ over $\mathbb{F}_{p^{n}}$ is maximal if and only if

- $\mathcal{X}: y^{p}-y=c\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right), c \in \mathbb{F}_{p}^{*}, p \equiv 3 \bmod 4$ and $v(k)=v(n)$, where $v(m)$ denote the 2-adic valuation of an integer m.
The curve $\mathcal{X}: y^{p}-y=\sum_{i=0}^{l} a_{i} x^{p^{i}+1}$ over $\mathbb{F}_{p^{n}}$ is minimal if and only if
- $\mathcal{X}: y^{p}-y=c\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right), c \in \mathbb{F}_{p}^{*}, p \equiv 1 \bmod 4$ and $v(k)=v(n)$, or
- $\mathcal{X}: y^{p}-y=c\left(x^{p^{\frac{k}{2}}+1}+x^{p^{\frac{3 k}{2}}+1}+\cdots+x^{p^{\frac{n-k}{2}}+1}\right), c \in \mathbb{F}_{p}^{*}, v(k)<v(n)$.

Proof. We distinguish two cases, the case that $v(n)>v(k)$ and the case that $v(n)=v(k)$.
Case(i): $v(n)>v(k)$
In this case $\left(x^{n}-1\right) /\left(x^{k}-1\right)=1+x^{k}+\cdots+x^{n / 2-k}+x^{n / 2}+x^{n / 2+k}+\cdots+x^{n-2 k}+x^{n-k}$. Recall that $A(x)=\left(x^{n}-1\right) /\left(x^{k}-1\right) g(x)$, where $g(x)=c_{0}+c_{1} x+\cdots+c_{1} x^{k-1}+c_{0} x^{k}$ and $\operatorname{gcd}\left(x^{k}-1, g(x)\right)=1$. Then with coefficient comparison we observe that the condition in Corollary 4.8 is satisfied, i.e. we obtain a maximal or minimal curve, if and only if

$$
A(x)=c x^{k / 2}\left(1+x^{k}+\cdots+x^{n / 2-k}+x^{n / 2}+x^{n / 2+k}+\cdots+x^{n-2 k}+x^{n-k}\right) .
$$

Again, without loss of generality we consider the case $c=1$ by Lemma 4.2. The corresponding linearized polynomial $L(x)$ and the quadratic function $Q(x)$ are then given as follows.

$$
\begin{aligned}
& L(x)=\left(x+x^{p^{k}}+\cdots+x^{p^{p^{/ 2-k}}}+x^{p^{n / 2}}+x^{p^{n / 2+k}}+\cdots+x^{p^{n-2 k}}+x^{p^{n-k}}\right)^{p^{k / 2}} \\
& Q(x)=\operatorname{Tr}_{n}\left(x^{p^{p^{k / 2}+1}}+x^{p^{3 k / 2}+1}+\cdots+x^{p^{(n-k) / 2}+1}\right)
\end{aligned}
$$

We put $n / k=p^{e} m, \operatorname{gcd}(m, p)=1$, and write $L(x)^{p^{-k / 2}}$ as

$$
\begin{aligned}
L(x)^{p^{-k / 2}}= & \left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right)+\left(x^{p^{p^{e} k}}+x^{p^{\left(p^{e}+1\right) k}}+\cdots+x^{p^{\left.p p^{e}-1\right) k}}\right) \\
& +\cdots+\left(x^{p^{(m-1) p^{e} k}}+x^{p^{\left((m-1) p^{e}+1\right) k}}+\cdots+x^{p^{\left(m p^{e}-1\right) k}}\right) \\
= & \left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right)+\left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right) p^{p^{p^{e} k}} \\
& +\cdots+\left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right)^{p^{(m-1) p^{e} k}} \\
= & \left.\sum_{i=0}^{m-1}\left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right)\right)^{p^{i p^{e} k}} .
\end{aligned}
$$

We note that, in this representation, each parenthesis contains exactly p^{e} elements. Set $\tilde{L}(x)=$ $x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}$. Then for all $x \in \mathbb{F}_{p^{p^{e} k}}$ we have $L(x)=m \tilde{L}(x)^{p^{k / 2}}$, and hence we can pick an element $\alpha \in \mathbb{F}_{p^{p^{e}}}$ with $\tilde{L}(\alpha) \neq 0$ and consequently $L(\alpha) \neq 0$. Again observing that $\tilde{L}(t \alpha)=t \tilde{L}(\alpha)$ for all $t \in \mathbb{F}_{p^{k}}$, we see that $\Omega^{c}:=\alpha \mathbb{F}_{p^{k}}$ is a complement of Ω in $\mathbb{F}_{p^{n}}$. We evaluate Q on Ω^{c} as

$$
\begin{aligned}
Q(t \alpha) & =\operatorname{Tr}_{n}\left((t \alpha)^{p^{k / 2}+1}+(t \alpha)^{p^{3 k / 2}+1}+\cdots+(t \alpha)^{p^{(n-k) / 2}+1}\right) \\
& =m \operatorname{Tr}_{p^{e} k}\left(t^{p^{k / 2}+1}\left(\alpha^{p^{k / 2}+1}+\alpha^{p^{3 k / 2}+1}+\cdots+\alpha^{p^{(n-k) / 2}+1}\right)\right) \\
& =m \operatorname{Tr}_{k}\left(t^{p^{k / 2}+1} \beta\right),
\end{aligned}
$$

where $\beta=\operatorname{Tr}_{\mathbb{F}_{p^{p}}{ }^{p_{k}} / \mathbb{F}_{p^{k}}}\left(\alpha^{p^{k / 2}+1}+\alpha^{p^{3 k / 2}+1}+\cdots+\alpha^{p^{(n-k) / 2}+1}\right)$. Consequently

$$
\widehat{Q}(0)=p^{n-k} \sum_{t \in \mathbb{F}_{p^{k}}} \epsilon_{p}^{Q(\alpha t)}=p^{n-k} \sum_{t \in \mathbb{F}_{p^{k}}} \epsilon_{p}^{m \operatorname{Tr}_{k}\left(\beta t^{p^{k / 2}+1}\right)}=p^{n-k}\left(-p^{k / 2}\right)=-p^{n-k / 2},
$$

where the last equality follows from Lemma 2 (iii) in [12]. Note that we again can exclude that $\beta=0$, otherwise $\widehat{Q}(0)=p^{n}$, which is a contradiction.

Case(ii): $v(n)=v(k)$
In this case $A(x)=\left(x^{n}-1\right) /\left(x^{k}-1\right) g(x)$, where $g(x)=c_{0}+c_{1} x+\cdots+c_{1} x^{k-1}+c_{0} x^{k}$ and $\operatorname{gcd}\left(x^{k}-1, g(x)\right)=1$. By Corollary 4.8, with coefficient comparison we see that we obtain a maximal or minimal curve if and only if

$$
A(x)=c\left(1+x^{k}\right)\left(1+\cdots+x^{\frac{n-k}{2}}+x^{\frac{n+k}{2}}+\cdots+x^{n-k}\right)=1+2 x^{k}+\cdots+2 x^{n-k}+x^{n}, c \in \mathbb{F}_{p}^{*}
$$

Choosing $c=1$, the corresponding linearized polynomial $L(x)$ and quadratic function $Q(x)$ are given as follows.

$$
\begin{aligned}
& L(x)=x+2 x^{p^{k}}+\cdots+2 x^{p^{(n-k) / 2}}+2 x^{p^{(n+k) / 2}}+\cdots+2 x^{p^{n-k}}+x^{p^{n}} \\
& Q(x)=\operatorname{Tr}_{n}\left(x^{2}+2 x^{p^{k}+1}+\cdots+2 x^{p^{\frac{n-k}{2}}+1}\right)
\end{aligned}
$$

Since $x^{p^{n}}=x$ for an element $x \in \mathbb{F}_{p^{n}}$, we can evaluate $L(x)$ as

$$
\begin{aligned}
L(x)= & 2\left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right)+2\left(x^{p^{p^{e} k}}+x^{p^{\left(p^{e}+1\right) k}}+\cdots+x^{p^{\left(2 p^{e}-1\right) k}}\right) \\
& +\cdots+2\left(x^{p^{(m-1) p^{e_{k}}}}+x^{p^{\left((m-1) p^{e}+1\right) k}}+\cdots+x^{p^{(m-1) p^{e} k+\left(p^{e}-1\right) k}}\right) \\
= & 2 \sum_{i=0}^{m-1}\left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right)^{p^{i p^{e} k}} .
\end{aligned}
$$

Hence for an element $x \in \mathbb{F}_{p^{p^{e} k}}$, we have $L(x)=2 m\left(x+x^{p^{k}}+\cdots+x^{p^{\left(p^{e}-1\right) k}}\right)=2 m \tilde{L}(x)$. Again we can pick an element $\alpha \in \mathbb{F}_{p^{p^{e_{k}}}}$ with $\tilde{L}(\alpha) \neq 0$ and equivalently, $L(\alpha) \neq 0$. Using that \tilde{L} is an $\mathbb{F}_{p^{k}}$-linear map, we again observe that $\Omega^{c}:=\alpha \mathbb{F}_{p^{k}}$ is a complement of Ω. Again we evaluate Q at $t \alpha$ for $t \in \mathbb{F}_{p^{k}}$.

$$
\begin{aligned}
Q(t \alpha) & =\operatorname{Tr}_{n}\left((t \alpha)^{2}+2(t \alpha)^{p^{k}+1}+\cdots+2(t \alpha)^{p^{\frac{n-k}{2}}+1}\right) \\
& =m \operatorname{Tr}_{p^{e} k}\left(t^{2}\left(\alpha^{2}+2 \alpha^{p^{k}+1}+\cdots+2 \alpha^{p^{\frac{n-k}{2}}+1}\right)\right) \\
& =m \operatorname{Tr}_{k}\left(\beta t^{2}\right),
\end{aligned}
$$

where $\beta=\operatorname{Tr}_{\mathbb{F}_{p^{p^{e} k}} / \mathbb{F}_{p^{k}}}\left(\alpha^{2}+2 \alpha^{p^{k}+1}+\cdots+2 \alpha^{p^{\frac{n-k}{2}}+1}\right)$. Note that β can not be zero since $\widehat{Q}(0) \neq p^{n}$. Then by Corollary 3 in [12] we have

$$
\widehat{Q}(0)=p^{n-k} \sum_{t \in \mathbb{F}_{p^{k}}} \epsilon_{p}^{Q(t \alpha)}=p^{n-k} \sum_{t \in \mathbb{F}_{p^{k}}}\left(\epsilon_{p}^{m}\right)^{\operatorname{Tr}_{k}\left(\beta t^{2}\right)}=(-1)^{\frac{p+1}{2}} \eta(\beta) p^{n-k / 2}
$$

where η is the quadratic character in $\mathbb{F}_{p^{k}}$.
Now we show that β is a square in $\mathbb{F}_{p^{k}}$. Write $k=p^{\ell} r$ with $\operatorname{gcd}(p, r)=1$ for some non-negative integer ℓ. Firstly note that as $\mathbb{F}_{p^{p^{e}} k}$ is compositum of $\mathbb{F}_{p^{k}}$ and $\mathbb{F}_{p^{p^{e+\ell}}}$ without loss of generality
we can chose $\alpha \in \mathbb{F}_{p^{p^{e+\ell}}}$. Then for any non-negative integer j we consider

$$
\operatorname{Tr}_{\mathbb{F}_{p^{p^{e} k} /} / \mathbb{F}_{p^{k}}}\left(\alpha^{j}\right)=\alpha^{j}+\left(\alpha^{j}\right)^{p^{k}}+\left(\alpha^{j}\right)^{p^{2 k}}+\cdots+\left(\alpha^{j}\right)^{p^{\left(p^{e}-1\right) k}} .
$$

Since $\left\{0, k, 2 k, \cdots,\left(p^{e}-1\right) k\right\} \equiv\left\{0, p^{\ell}, 2 p^{\ell}, \cdots,\left(p^{e}-1\right) p^{\ell}\right\} \bmod p^{e+\ell}$, by using the fact that $\alpha^{p^{p^{e+\ell}}}=\alpha$ we obtain the following equalities.
$\alpha^{j}+\left(\alpha^{j}\right)^{p^{k}}+\left(\alpha^{j}\right)^{p^{2 k}}+\cdots+\left(\alpha^{j}\right)^{p^{\left(p^{e}-1\right) k}}=\alpha^{j}+\left(\alpha^{j}\right)^{p^{p^{\ell}}}+\left(\alpha^{j}\right)^{p^{2 p^{\ell}}}+\cdots+\left(\alpha^{j}\right)^{p^{\left(p^{e}-1\right) p^{\ell}}}=\operatorname{Tr}_{\mathbb{F}_{p^{p e+\ell}} / \mathbb{F}_{p^{p^{\ell}}}}\left(\alpha^{j}\right)$
This shows that $\beta \in \mathbb{F}_{p^{p^{p}}}$. On the other hand the extension degree of $\mathbb{F}_{p^{k}}: \mathbb{F}_{p^{p^{\ell}}}$ is an even integer as k is an even integer. This implies that β is a square in $\mathbb{F}_{p^{k}}$. As a consequence, we have $\widehat{Q}(0)=(-1)^{\frac{p+1}{2}} p^{n-k / 2}$.

References

[1] N. Anbar, W. Meidl, Quadratic Functions and Maximal Artin-Schreier Curves, Finite Fields and Their Applications, to appear.
[2] E. Çakçak, F. Özbudak, Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places. J. of Pure and Appl. Algebra 210 (1) (2007) 113-135.
[3] A. Çeşmelioğlu, G. McGuire, W. Meidl, A construction of weakly and non-weakly regular bent functions. J. Comb. Theory, Series A 119 (2012), 420-429.
[4] A. Çeşmelioğlu, W. Meidl, Not weakly regular bent polynomials from vectorial quadratic functions. Preprint 2013.
[5] R. Coulter, Explicit evaluations of some Weil sums. Acta Arith. 83 (1998), 241-251.
[6] R. Coulter, On the evaluation of a class of Weil sums in characteristic 2. New Zealand J. Math. 28 (1999), 171-184.
[7] R. Coulter, The number of rational points of a class of Artin-Schreier curves. Finite Fields Appl. 8 (2002), 397-413.
[8] K. Feng, J. Luo, Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14 (2008), 390-409.
[9] K. Feng, J. Luo, On the weight distributions of two classes of cyclic codes. IEEE Trans. Inform. Theory 54 (2008), 5332-5344.
[10] R.W. Fitzgerald, Highly degenerate quadratic forms over finite fields of characteristic 2. Finite Fields Appl. 11 (2005), 165-181.
[11] R.W. Fitzgerald, Trace forms over finite fields of characteristic 2 with prescribed invariants. Finite Fields Appl. 15 (2009), 69-81.
[12] T. Helleseth, A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 52 (2006), 2018-2032.
[13] K. Khoo, G. Gong, D. Stinson, A new characterization of semi-bent and bent functions on finite fields, Designs, Codes, Cryptogr. 38 (2006), 279-295.
[14] J. Lahtonen, G. McGuire, H. N. Ward, Gold and Kasami-Welch functions, quadratic forms, and bent functions, Adv. Math. Commun. vol. 1, no. 2 (2007), 243-250.
[15] X. Lai, Additive and linear structures of cryptographic functions, Fast Software Encryption, Lecture Notes in Comput. Sci. 1008 (1995), 75-85.
[16] R. Lidl, H. Niederreiter, Finite Fields, 2nd ed., Encyclopedia Math. Appl., vol. 20, Cambridge Univ. Press, Cambridge, 1997.
[17] W. Meidl, S. Roy, A. Topuzoğlu, Enumeration of quadratic functions with prescribed Walsh spectrum. Preprint 2013.
[18] F. Özbudak, E. Saygı, Z. Saygı, Quadratic forms of codimension 2 over certain finite fields of even characteristic, Cryptogr. Commun. 3 (2011), 241-257.
[19] F. Özbudak, E. Saygı, Z. Saygı, Quadratic forms of codimension 2 over finite fields containing \mathbb{F}_{4} and ArtinSchreier type curves, Finite Fields Appl. 8 (2012), 396-433.
[20] H. Stichtenoth, Algebraic function fields and codes, $2^{\text {nd }}$ Edition, Graduate Texts in Mathematics 254, Springer Verlag, 2009.
[21] Y. Zheng, X.M. Zhang, On plateaued functions. IEEE Trans. Inform. Theory 47 (2001), 1215-1223.

