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1. Abstract

For an odd prime p and an even integer n with gcd(n, p) > 1, we consider quadratic functions

from Fpn to Fp of codimension k. For various values of k, we obtain classes of quadratic functions

giving rise to maximal and minimal Artin-Schreier curves over Fpn . We completely classify all

maximal and minimal curves obtained from quadratic functions of codimension 2 and coefficients

in the prime field Fp. These results complement earlier results in [1] for the case that gcd(n, p) =

1. This is a joint work with Wilfried Meidl.

2. Introduction

In this article we consider the Artin-Schreier cover of the Fpn-projective line given by

(2.1) X : yp − y =

bn/2c∑
i=0

aix
pi+1 with ai ∈ Fpn ,

where bmc denotes the integer part of the real number m. The genus g(X ) of X is (p−1)pl

2 , where

l is the largest integer with al 6= 0, see (see Proposition 3.7.8 in [20]). By the Hasse-Weil bound,

the number of rational points N(X ) of X satisfies

1 + pn − 2g(X )p
n
2 ≤ N(X ) ≤ 1 + pn + 2g(X )p

n
2 ,

i.e.

(2.2) 1 + pn − (p− 1)p
n+2l

2 ≤ N(X ) ≤ 1 + pn + (p− 1)p
n+2l

2 .

The curve is called maximal (respectively minimal) if it attains the upper (respectively lower)

bound in (2.2).

By Hilbert’s Theorem 90, the number of rational points N(X ) of X is given by

N(X ) = 1 + pN0(Q) ,

where N0(Q) is the number of solutions of Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1) = 0 and Trn(z) is the

absolute trace of z ∈ Fpn .

As we will see, the determination of N0(Q) requires the exact evaluation of the character sum

(2.3)
∑
x∈Fpn

ε
Trn(

∑bn/2c
i=0 aix

pi+1)
p ,

1
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called the Walsh coefficient of Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1) at 0. Only a few character sums of

the form (2.3) have been determined explicitly. In [12, 5] the character sum (2.3) is determined

for monomials Q(x) = Trn(axp
i+1) for an odd prime p. Using these results, all maximal and

minimal curves of the form yp − y = axp
i+1 are classified. Some more results are known for

p = 2, see [6, 10, 11, 14, 18, 19]. Moreover, results on the distribution of character sum can be

found in [2, 8, 9].

In the recent paper [1], some more classes of character sums of the form (2.3) for odd primes

p with gcd(n, p) = 1 and coefficients ai in the prime field have been evaluated, which induce

some more classes of minimal and maximal curves. We summarize the main results of [1] in the

following two propositions. By v(m) we denote the 2-adic valuation of an integer m.

Proposition 2.1. Let n be an even integer with gcd(n, p) = 1, and let k be an even divisor of

n. The curve X over Fpn given by

X : yp − y = c(x2 + 2xp
k+1 + · · ·+ 2xp

n−k
2 +1) , c ∈ F∗p

is maximal if and only if p ≡ 3 mod 4 and n ≡ 2 mod 4, and minimal if and only if v(k) = v(n)

and p ≡ 1 mod 4, or v(k) = v(n), p ≡ 3 mod 4 and n ≡ 0 mod 4.

The curve X over Fpn given by

X : yp − y = c(xp
k
2 +1 + xp

3k
2 +1 + · · ·+ xp

n−k
2 +1) , c ∈ F∗p

is minimal if and only if v(k) < v(n) (and never maximal).

Using the results of Proposition 2.1, in [1] all maximal and minimal curves over Fpn of the form

(2.1) with coefficients in the prime field Fp, p odd, and genus p−1
2 p(n−2)/2 have been classified

under the assumption that gcd(p, n) = 1. We can state the result as follows.

Proposition 2.2. Let n be an even integer with gcd(n, p) = 1, and let X : yp−y =
∑bn/2c

i=0 aix
pi+1 =:

Q(x) be a curve of genus g(X ) = p−1
2 p(n−2)/2, where coefficients ai lie in the prime field Fp.

Then X is maximal over Fpn if and only if

• n ≡ 2 mod 4, p ≡ 3 mod 4, and Q(x) = c(x2 + 2xp
2+1 + · · ·+ 2xp

n
2−1+1), c ∈ F∗p,

and X is minimal over Fpn if and only if

• n ≡ 2 mod 4, p ≡ 1 mod 4, and Q(x) = c(x2 + 2xp
2+1 + · · ·+ 2xp

n
2−1+1), c ∈ F∗p, or

• n ≡ 0 mod 4, and Q(x) = c(xp+1 + xp
3+1 + · · ·+ xp

n
2−1+1), c ∈ F∗p.

In all proofs in [1] the condition gcd(n, p) = 1 plays a central role. The objective of this article

is to analyze the analog curves for the more complicated case that gcd(n, p) > 1.

In Section 3 we present some results on the Walsh transform of quadratic functions, which

will be needed in the sequel. In Section 4 we relate the number of points of a curve of the form

(2.1) to the Walsh coefficient at zero of the corresponding quadratic function. In Section 5 we

present some new classes of maximal and minimal curves of the form (2.1) for the case that
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gcd(n, p) > 1. In particular, combining with the results in [1] on the case gcd(n, p) = 1, we

classify all maximal and minimal curves of the form (2.1) obtained from quadratic functions of

codimension 2 whose coefficients lie in the prime field Fp.

3. Quadratic functions and Walsh transform

Let n be an integer and let p be an odd prime. Omitting linear and constant terms, a quadratic

function Q, i.e. a function of algebraic degree 2, from Fpn to Fp can be represented in trace form

as

(3.1) Q(x) = Trn(

bn/2c∑
i=0

aix
pi+1)

with a0, . . . , abn/2c ∈ Fpn . If n is odd, this representation is unique. Observing that xp
n/2+1 ∈

Fpn/2 , we obtain that Trn(an/2x
pn/2+1) = Trn/2(xp

n/2+1TrFpn/Fpn/2
(an/2)). Consequently, if n is

even, then the coefficient an/2 is only unique modulo the group G = {a ∈ Fpn | TrFpn/Fpn/2
(a) =

0}. In this article we are interested in curves of the form (2.1) obtained from quadratic functions

Q, which attain the Hasse-Weil bound (2.2). In particular, we are only interested in the case

that n is even.

For a function f : Fpn → Fp, an element a ∈ Fpn for which the derivative Daf(x) = f(x +

a) − f(x) is constant is called a linear structure of f . The set Ω of the linear structures of f

is a subspace of Fpn called the linear space of f , see [15, 21]. As easily seen, for all a ∈ Ω and

x ∈ Fpn , we have f(x+ a) = f(x) + f(a)− f(0). In particular, f is linear on Ω if f(0) = 0.

The Walsh coefficient Q̂(b) of Q at the value b ∈ Fpn is the character sum

Q̂(b) =
∑
x∈Fpn

εf(x)−Trn(bx)
p , εp = e2πi/p .

As well known, every quadratic function Q from Fpn to Fp is s-plateaued, i.e. for all b ∈ Fpn we

have Q̂(b) = 0 or |Q̂(b)| = p
n+s
2 for a fixed integer 0 ≤ s < n, depending on Q. This integer s is

exactly is the dimension (over Fp) of the linear space Ω of Q, see [3].

The linear space of a quadratic function (3.1) is the kernel (in Fpn) of the linearized polynomial

(cf. [12, 13])

L(x) =

bn/2c∑
i=0

aix
pi + ap

n−i

i xp
n−i

.

Consequently Q : Fpn → Fp is s-plateaued if and only if

(3.2) deg(gcd(L(x), xp
n − x)) = ps .
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If all coefficients ai of Q(x) are in the prime field Fp, then then the linearized polynomial

corresponding to Q is

(3.3) L(x) =

bn/2c∑
i=0

aix
pi + aix

pn−i

with the p-associate

(3.4) A(x) =

bn/2c∑
i=0

aix
i + aix

n−i .

Using the concept of the p-associate we can then facilitate the determination of s in Equation

3.2 as

s = deg(gcd(A(x), xn − 1)) ,

see also [1, 13, 17]. We observe that A(x) = xdh(x) for a non-negative integer d and a self-

reciprocal polynomial h of degree n− 2d. Consequently, if A(x) is the associate of a linearized

polynomial corresponding to an s-plateaued function Q with coefficients in Fp, then

gcd(A(x), xn − 1) =
xn − 1

f(x)
,

with f(x) = (x− 1)δ(1 + b1x+ · · ·+ b1x
n−s−1−δ + xn−s−δ) , δ ∈ {0, 1} .

The polynomial A(x) can then be written as

A(x) = (x− 1)(1−δ)x
n − 1

f(x)
g(x) ,(3.5)

where g(x) = c0 + c1x+ · · ·+ c1x
n−s−2+δ + c0x

n−s−1+δ with gcd(f(x), g(x)) = 1 .

An important notion for functions from Fpn to Fp is extended affine equivalence (EA-equivalence).

Two functions f, g from Fpn to Fp are called EA-equivalent if there exist a linearized permuta-

tion polynomial P(x), a linearized polynomial L(x) and constants a, e ∈ Fp, d ∈ Fpn such that

g(x) = af(P(x) + d) + L(x) + e.

In the framework of the isomorphic vector space Fnp , the Walsh transform of a function f : Fnp →
Fp is given by

f̂(b) =
∑
x∈Fn

p

εf(x)−b·x
p , b ∈ Fnp ,

where b · x denotes the dot product in Fnp . In this framework two functions f, g from Fnp to Fp
are EA-equivalent if there exist an invertible n × n-matrix P over Fp, elements u,v ∈ Fnp and

constants a, e ∈ Fp such that g(x) = af(Px + u) + v · x + e for all x ∈ Fnp .

It is well known that Walsh spectrum (value set of the Walsh transform) and algebraic degree are

invariant under EA-equivalence. In particular affine coordinate transformations do not change

the Walsh spectrum. More precisely, the effect of coordinate transformations is given as follows.

T1: ̂f(x + u)(b) = εb·up f̂(b),
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T2: if P ∈ GLn(Fp) then f̂(Px)(b) = f̂((P−1)Tb), where P T denotes the transpose of the

matrix P .

4. Walsh transform and the number of points

Objective in this section is to relate the number of rational points N(X ) of X given as in

(2.1) to the Walsh coefficient Q̂(0) of Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1) at 0. This will be used in

Section 5 to obtain some classes of maximal and minimal curves. We choose here a different

approach than in [1] based on character sums. We first show that for odd p a quadratic function

Q without an affine term satisfies Q̂(0) = ζp(n+s)/2 for some ζ ∈ {1,−1, i,−i}. In particular

this shows Q̂(0) 6= 0.

Lemma 4.1. For an integer n and an odd prime p, let Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1), ai ∈ Fpn.

Then

Q̂(0) =

{
±p

n+s
2 if n− s even, or n− s odd and p ≡ 1 mod 4,

±ip
n+s
2 if n− s odd and p ≡ 3 mod 4

for some integer 0 ≤ s ≤ n− 1.

Proof. We may consider the isomorphic vector space Fnp . Any quadratic function (without a

linear or constant term) from Fnp to Fp can be transformed by an affine coordinate transformation

to a diagonal form

Q(x) = d1x
2
1 + · · ·+ dn−sx

2
n−s

for some integer 0 ≤ s ≤ n−1, and di 6= 0 for i = 1, . . . , n−s, see [16, Section 6.2]. By Properties

T1 and T2, an affine coordinate transformation does not change the Walsh coefficient at 0. For

the function q(x) = dx2 on Fp, by [16, Theorem 5.33] and [16, Theorem 5.15] we have

(4.1) Q̂(0) =
∑
x∈Fp

εdx
2

p = η(d)G(η, χ1) =

 η(d)p
1
2 if p ≡ 1 mod 4,

η(d)ip
1
2 if p ≡ 3 mod 4,

where χ1 is the canonical additive character of Fp, η denotes the quadratic character of Fp, and

G(η, χ1) is the associated Gaussian sum. This shows the correctness for n = 1.

For two functions g1 : Fmp → Fp and g2 : Fnp → Fp, the direct sum g1⊕ g2 from Fnp × Fmp = Fm+n
p

to Fp is defined by (g1 ⊕ g2)(x, y) = g1(x) + g2(y). As easily seen,

(4.2) ̂(g1 ⊕ g2)(u, v) = ĝ1(u)ĝ2(v) .

The assertion for arbitrary n follows then from (4.1), applying (4.2) recursively to qi(xi) = dix
2
i ,

1 ≤ i ≤ n, together with the simple observation that for n − s + 1 ≤ i ≤ n, where di = 0, we

have q̂i(0) = p. 2
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Let f ∈ Fpn [x], and let m be an integer with gcd(m,n) = t. Then, following the arguments in

[7], for the number N(f) of solutions (x, y) ∈ Fpn × Fpn of yp
m − y = f(x) we have

pnN(f) =
∑

a,x,y∈Fpn

εTrn(a(f(x)−(yp
m−y)))

p =
∑

a,x∈Fpn

εTrn(af(x))
p

∑
y∈Fpn

εTrn(ay−aypm )
p

=
∑

a,x∈Fpn

εTrn(af(x))
p

∑
y∈Fpn

εTrn(yp
m

(ap
m−a))

p = pn
∑
a∈Fpt

∑
x∈Fpn

εTrn(af(x))
p ,(4.3)

where in the last step we used that ap
m − a vanishes if and only if a ∈ Fpt = Fpm ∩ Fpn . We use

Equation 4.3 to express the number of rational points over Fpn of a curve

X : yq − y =

l∑
i=0

aix
qi+1 , ai ∈ Fpn , 0 ≤ i ≤ l ,

with q = pm for any divisor m of n. In the proof of the subsequent Theorem we will use the

following Lemma, see [4, Theorem 1].

Lemma 4.2. For a divisor m of n and q = pm, a quadratic function from Fpn to Fp of

the form Q(x) = Trn(
∑bn/(2m)c

i=0 bix
qi+1), bi ∈ Fq, is s-plateaued for an integer 0 ≤ s < n

which is divisible by m. For a nonzero element a ∈ Fq, the function Qa(x) given by Qa(x) =

Trn(a
∑bn/(2m)c

i=0 bix
qi+1) is also s-plateaued with the same integer s, and

Q̂a(b) = µ(a)
n−s
m Q̂(b) , b ∈ Fpn ,

where µ denotes the quadratic character in Fq.

Theorem 4.3. For an odd prime p and a divisor m of n let q = pm, and let Q(x) = Trn(
∑l

i=0 aix
qi+1),

lm ≤ n/2, be an s-plateaued quadratic function from Fpn → Fp. Set k := n−s
m . Then the number

of rational points of

X : yq − y =

l∑
i=0

aix
qi+1

over Fpn is given by

N(X ) = 1 + pN0(Q) =

{
1 + pn + (q − 1)Q̂(0) if k is even,

1 + pn if k is odd.

Proof. Let N(Q) be the number of solutions in Fpn ×Fpn of yq−y =
∑l

i=0 aix
qi+1, and hence

N(X ) = 1 +N(Q). Denoting the set of nonzero squares in Fq by Sq and the set of non-squares

in Fq by NSq, by Equation 4.3 we have

N(Q) =
∑
a∈Fpm

∑
x∈Fpn

εQa(x)
p = pn +

∑
a∈Sq

Q̂a(0) +
∑

a∈NSq
Q̂a(0).

First suppose that k = n−s
m is even. Then by Lemma 4.2 we have Q̂a(0) = Q̂(0) for all a 6= 0.

Consequently, N(Q) = pn + (q − 1)Q̂(0) and the statement for k even follows.
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If k = n−s
m is odd, then again by Lemma 4.2, Q̂a(0) = Q̂(0) if a is a nonzero square in Fp, and

Q̂a(0) = −Q̂(0) if a is a non-square in Fp. Hence N(Q) = pn. 2

Combining Lemma 4.1 and Theorem 4.3 we get the next corollary.

Corollary 4.4. For an odd prime p and a divisor m of n, let q = pm, and let Q(x) =

Trn(
∑l

i=0 aix
qi+1), lm ≤ n/2, be an s-plateaued quadratic function from Fpn → Fp. The number

of Fpn-rational points of the curve

X : yq − y =
l∑

i=0

aix
qi+1

is given by

N(X ) =

{
1 + pn + Λ(pm − 1)p

n+s
2 if (n− s)/m is even,

1 + pn if (n− s)/m is odd,

where

Λ =

{
1 if Q̂(0) = p

n+s
2 ,

−1 if Q̂(0) = −p
n+s
2 .

Remark 4.5. Lemma 4.1 implies that Q̂(0) 6= 0 if p is odd and Q does not contain a linear

term. However, if the quadratic function contains a linear term, then we may have Q̂(0) = 0,

i.e. the function Q is balanced. In this case N(X ) = 1 + pn.

Since we are particularly interested in maximal (respectively minimal) curves X : yp − y =∑bn/2c
i=0 aix

pi+1 of the form (2.1), we consider quadratic functions Q : Fpn → Fp with even n.

The subsequent corollary describes the conditions on Q required to obtain maximal (respectively

minimal) curves.

Corollary 4.6. Let Q(x) = Trn(
∑bn/2c

i=0 aix
pi+1) be an s-plateaued quadratic function from Fpn

to Fp, and suppose that l ≤ n/2 is the largest integer for which al is non-zero. Then

X : yp − y =

bn/2c∑
i=0

aix
pi+1

is a maximal (respectively minimal) curve over Fpn if and only if n is even, s = 2l and Λ = 1

(respectively Λ = −1).

Proof. The statement follows from Corollary 4.4 and Inequality 2.2 with g(X ) = p−1
2 pl. 2

Remark 4.7. If X is maximal or minimal, then the dimension s of the linear space of Q must

be even.

Corollary 4.8. Let Q(x) = Trn(
∑n/2

i=0 aix
pi+1) be an s-plateaued function from Fpn to Fp, and

set k := n − s. The curve X : yp − y =
∑n/2

i=0 aix
pi+1 over Fpn is maximal or minimal if and

only if

an
2

= an
2
−1 = · · · = an−k

2
+1 = 0 and an−k

2
6= 0 .
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Proof. The statement follows from Corollary 4.6 with l = n−k
2 . �

We remark that an
2

= an
2
−1 = · · · = an−k

2
+1 = 0 together with the Hasse-Weil bound already

implies an−k
2
6= 0.

5. Maximal and minimal curves

In this section we consider curves over Fpn of the form X : yp−y =
∑
aix

pi+1 with coefficients

ai in the prime field Fp and gcd(n, p) > 1. Our results complement the results of [1], where similar

curves for the easier case that gcd(n, p) = 1 have been considered. We first completely character-

ize all maximal and minimal curves obtained from quadratic functions Q(x) = Trn(
∑
aix

pi+1)

of codimension 2, i.e. quadratic functions with linear space of dimension s = n − 2. Then we

presents some more infinite classes of maximal and minimal curves of various genus, i.e. curves

obtained from quadratic functions of various codimension.

We start with a lemma which excludes many curves from being maximal or minimal. The

proof of the lemma is also given implicitly in the proof of Theorem 5.5 in [1] on curves obtained

from quadratic functions of codimension 2.

Lemma 5.1. Let X : yp− y =
∑l

i=0 aix
pi+1 with coefficients in the prime field Fp and l ≤ n/2.

Let A(x) be the p-associate (3.4) of the linearized polynomial (3.3) of Q(x) = Trn(
∑l

i=0 aix
pi+1).

If the curve X over Fpn is maximal or minimal, then

gcd(A(x), xn − 1) =
xn − 1

f(x)

for a polynomial f(x) with f(1) = 0.

Proof. Let gcd(xn− 1, A(x)) = (xn− 1)/f(x) for a polynomial f(x) of (even) degree k, which

is not divisible by x− 1. Then

A(x) = (x− 1)
xn − 1

f(x)
g(x)

with

f(x) = b0 + b1x+ · · ·+ b1x
k−1 + b0x

k, g(x) = c0 + c1x+ · · ·+ c1x
k−2 + c0x

k−1 ∈ Fp[x]

and gcd(f(x), g(x)) = 1. Consequently, we have the following equality.

(5.1) A(x)(b0 +b1x+ · · ·+b1x
k−1 +b0x

k) = (xn+1−xn−x+1)(c0 +c1x+ · · ·+c1x
k−2 +c0x

k−1)

By Corollary 4.8, the corresponding curve is maximal or minimal if and only if

A(x) = a0 + a1x+ · · ·+ an−k
2
x

n−k
2 + an−k

2
x

n+k
2 + · · ·+ a1x

n−1 + a0x
n with an−k

2
6= 0 .

Comparing the coefficients of x
n+k
2 in Equality 5.1, we then obtain that

2an−k
2
b0 = 0 .
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Since f(x) has degree k and an−k
2
6= 0, we get a contradiction. 2

We consider now quadratic functions Q(x) (with coefficients in the prime field Fp) of codimension

2, i.e. the associate A(x) of the corresponding linearized polynomial satisfies gcd(A(x), xn−1) =

(xn − 1)/f(x) for a polynomial f(x) of degree 2.

Theorem 5.2. Let p be an odd prime with gcd(n, p) > 1, and let Q(x) = Trn(
∑l

i=0 aix
pi+1)

be a quadratic function from Fpn to Fp with coefficients in Fp, for which the linear space has

dimension n− 2. The curve X : yp − y =
∑l

i=0 aix
pi+1 over Fpn is maximal if and only if

• X : yp − y = c(x2 + 2xp
2+1 + · · ·+ 2xp

n
2−1+1), c ∈ F∗p, n ≡ 2 mod 4 and p ≡ 3 mod 4.

The curve X : yp − y =
∑l

i=0 aix
pi+1 over Fpn is minimal if and only if

• X : yp− y = c(x2 + 2xp
2+1 + · · ·+ 2xp

n
2−1+1), c ∈ F∗p, n ≡ 2 mod 4 and p ≡ 1 mod 4, or

• X : yp − y = c(xp+1 + xp
3+1 + · · ·+ xp

n
2−1+1), c ∈ F∗p and n ≡ 0 mod 4.

Proof. By Lemma 5.1, gcd(A(x), xn − 1) = (xn − 1)/f(x) for a quadratic polynomial f(x)

which is divisible by x− 1. Hence we must have f(x) = x2 − 1. By (3.5), the polynomial A(x)

is then of the form

(a) A(x) = cxx
n−1
x2−1

for some c ∈ F∗p, or

(b) A(x) = cx
n−1
x2−1

(x2 + ax+ 1) for some a 6= ±2 and c ∈ F∗p.

First we consider the case (a). In this case

A(x) =

{
c(xn−1 + xn−3 + · · ·+ xn/2+2 + xn/2 + xn/2−2 + · · ·+ x3 + x) if n ≡ 2 mod 4

c(xn−1 + xn−3 + · · ·+ xn/2+1 + xn/2−1 + · · ·+ x3 + x) if n ≡ 0 mod 4,

and hence the corresponding quadratic function is given by

Q(x) =

 Trn

(
c(xp+1 + xp

3+1 + · · ·+ xp
n/2−2+1 + (1/2)xp

n/2+1)
)

if n ≡ 2 mod 4

Trn

(
c(xp+1 + xp

3+1 + · · ·+ xp
n/2−1+1)

)
if n ≡ 0 mod 4.

By Corollary 4.8, we obtain a maximal or minimal curve from Q(x) only for n ≡ 0 mod 4.

To determine whether the resulting curve is maximal or minimal, we have to calculate Q̂(0)

explicitly, for Q(x) = Trn(c(xp+1 + xp
3+1 + · · · + xp

n/2−1+1)). We note by Lemma 4.2 the sign

in Q̂(0) is independent from the constant c ∈ F∗p since n− 2 is even. We therefore may without

loss of generality choose c = 1. Then the linearized polynomial corresponding to Q is given by

L(x) = xp
n−1

+ xp
n−3

+ · · ·+ xp
n/2+1

+ xp
n/2−1

+ · · ·+ xp
3

+ xp .
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Since we suppose that gcd(n, p) > 1, we put n = mpe, e ≥ 1, and gcd(p,m) = 1. Then we can

write L(x) as

L(x) =

(m−2)/2∑
k=0

xp
1+2kpe

+ xp
3+2kpe

+ · · ·+ xp
2pe−1+2kpe

=

(m−2)/2∑
k=0

(
xp + xp

3
+ · · ·+ xp

2pe−1
)p2kpe

.

For an element x ∈ Fp2pe we have

L(x) = (m/2)
(
x+ xp

2
+ · · ·+ xp

2pe−2
)p
.

Set L̃(x) = x+ xp
2

+ · · ·+ xp
2pe−2

so that L(x) = (m/2)L̃(x)p for x ∈ Fp2pe . Clearly, |Ker(L̃)| ≤
degL̃ = p2pe−2. (In fact, xp

2pe −x = (xp
2 −x)◦ L̃(x), and hence the zeros of L̃ lie in Fp2pe , which

implies that |Ker(L̃)| = degL̃ = p2pe−2.) We can pick α ∈ Fp2pe such that L̃(α) 6= 0, and hence

L(α) 6= 0. Then, since L(tx) = (m/2)tpL̃(x)p for all t ∈ Fp2 and x ∈ Fp2pe , the 2-dimensional

vector space Ωc := αFp2 satisfies Ω ∩ Ωc = {0}, where Ω := Ker(L) is the linear space of Q.

Consequently, Ωc is a complement of Ω in Fpn .

To determine the Walsh coefficient of Q at 0, we write x ∈ Fpn as x = y + z with y ∈ Ω and

z ∈ Ωc, and take an advantage of the fact that Q is linear on Ω. We have

Q̂(0) =
∑
x∈Fpn

εQ(x)
p = (

∑
y∈Ω

εQ(y)
p )(

∑
z∈Ωc

εQ(z)
p ) =

{
pn−2

∑
z∈Ωc ε

Q(z)
p if Q(y) = 0 for all y ∈ Ω,

0 otherwise.

By Lemma 4.1 Q̂(0) 6= 0, so we conclude that Q̂(0) = pn−2
∑

z∈Ωc ε
Q(z)
p .

For z ∈ Ωc with z = αt, t ∈ Fp2 , we get

Q(z) = Trn

(
αt
(

(αt)p + (αt)p
3

+ · · ·+ (αt)p
n/2−1

))
= Trn

(
tp+1

(
αp+1 + αp

3+1 + · · ·+ αp
n/2−1+1

))
= tp+1Trn

(
αp+1 + αp

3+1 + · · ·+ αp
n/2−1+1

)
= tp+1Q(α).

In the last equality we used that tp+1 ∈ Fp if t ∈ Fp2 . For the Walsh coefficient of Q at 0 we

then obtain

Q̂(0) = pn−2
∑
t∈Fp2

εQ(α)tp+1

p = pn−2

1 + (p+ 1)
∑

y∈Fp\{0}

(εQ(α)
p )y


= pn−2(1 + (p+ 1)(−1)) = −pn−1 .

Note that in the last step we can exclude that Q(α) = 0, otherwise we get Q̂(0) = pn, a

contradiction. This finishes the proof for the case (a).
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Now we consider the case (b), where A(x) = c(xn−2 + xn−4 + · · · + x2 + 1)(x2 + ax + 1) for

some a 6= ±2 and c ∈ F∗p. Again we can without loss of generality choose c = 1. In order to get

a maximal or minimal curve, the coefficient an/2 of xn/2 must be zero by Corollary 4.8. This

holds if and only if n ≡ 2 mod 4 and

A(x) = (xn−2 + xn−4 + · · ·+ xn/2+1 + xn/2−1 + · · ·+ x2 + 1)(x2 + 1) .

The corresponding linearized polynomial is then given by

L(x) = xp
n

+ 2xp
n−2

+ · · ·+ 2xp
n/2+3

+ 2xp
n/2+1

+ · · ·+ 2xp
4

+ 2xp
2

+ x .

Since xp
n

= x for an element x ∈ Fpn , we can evaluate L(x) as

L(x) = 2
(
x+ xp

2
+ · · ·+ xp

2pe−2
)

+ 2
(
xp

2pe

+ xp
2pe+2

+ · · ·+ xp
4pe−2

)
+ · · ·+ 2

(
xp

(m−2)pe

+ xp
(m−2)pe+2

+ · · ·+ xp
n−2
)
.

In this representation each parenthesis contains exactly pe summands. We observe that for an

element x in Fp2pe , we have L(x) = m(x+xp
2

+ · · ·+xp
2pe−2

) = mL̃(x). As observed above, the

kernel Ker(L̃) in Fpn of L̃ lies in Fp2pe and has cardinality p2pe−2, and there exists an element

α ∈ Fp2pe such that L̃(α) 6= 0, hence L(α) 6= 0. Since L(tα) = mL̃(tα) = mtL̃(α) for all t ∈ Fp2 ,

the 2-dimensional vector space Ωc = αFp2 over Fp is again a complement in Fpn of Ω, the linear

space of Q. As in the case (a),

Q̂(0) = pn−2
∑
z∈Ωc

εQ(z)
p = pn−2

∑
t∈Fp2

εQ(tα)
p .

We have

Q(tα) = (m/2)Tr2pe

(
(tα)2 + 2(tα)p

2+1 + 2(tα)p
4+1 + · · ·+ 2(tα)p

n/2−1+1
)

= (m/2)Tr2pe

(
t2(α2 + 2αp

2+1 + 2αp
4+1 + · · ·+ 2αp

n/2−1+1)
)

= (m/2)Tr2

(
βt2
)
,

where β = TrF
p2p

e /Fp2
(α2 + 2αp

2+1 + 2αp
4+1 + · · ·+ 2αp

n/2−1+1). If β = 0 then

Q̂(0) = pn−2
∑
t∈Fp2

εQ(tα)
p = pn−2

∑
t∈Fp2

(ε(m/2)
p )Tr2(βt2) = pn,

which is a contradiction. Hence β 6= 0, and

Q̂(0) = pn−2
∑
t∈Fp2

εQ(tα)
p = pn−2

∑
t∈Fp2

(ε(m/2)
p )Tr2(βt2) = (−1)

p+1
2 η(β)pn−1,

where last equality follows from Corollary 3 in [12].

As a final step we determine the quadratic character η(β) of β ∈ Fp2 . Since Fp2pe is the

compositum of Fppe and Fp2 , and L̃(tγ) = tL̃(γ) for all t ∈ Fp2 and γ ∈ Fppe , we cannot have
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L̃(γ) = 0 for all γ ∈ Fppe . Hence without loss of generality we can choose α ∈ Fppe . Using the

fact that αp
pe

= α, for any non-negative integer j we get

TrF
p2p

e /Fp2
(αj) = αj + αjp

2
+ αjp

4
+ · · ·+ αjp

pe−1
+ αjp

pe+1
+ · · ·+ αjp

2pe−2

= αj + αjp
2

+ αjp
4

+ · · ·+ αjp
pe−1

+ αjp + · · ·+ αjp
pe−2

= αj + αjp + αjp
2

+ · · ·+ αjp
pe−2

+ αjp
pe−1

= Trpe(α
j).

In particular this shows that β ∈ F∗p, and therefore β is a square in Fp2 . As a consequence,

Q̂(0) = (−1)
p+1
2 pn−1. 2

Remark 5.3. Theorem 5.2 is considerably harder to obtain than the analog theorem in [1] for

the case that gcd(n, p) = 1. Together with the result on the case gcd(n, p) = 1, Theorem 5.2

completely classifies all maximal and minimal curves obtained from quadratic functions in odd

characteristic p of codimension 2 and coefficients in the prime field Fp. Maximal and minimal

curves obtained from quadratic functions in characteristic 2 of codimension 2 and coefficients in

F2 are characterized in [10].

We finish this section with a generalization of Theorem 5.2 to quadratic fucnctions for which

the p-associate A(x) satisfies gcd(A(x), xn − 1) = (xn − 1)/(xk − 1) for an (even) divisor k

of n. As a result we obtain infinite classes of maximal and minimal curves obtained from

quadratic function with various codimenson k, respectively curves of various genus. The easier

case that gcd(n, p) = 1 has been dealt with in [1, Theorem 5.3]. In fact, the proof of Theorem

5.3 in [1] holds more generally for the case that gcd(n/k, p) = 1. Hence we here suppose that

gcd(n/k, p) > 1.

Theorem 5.4. Let n be an even integer divisible by p and let k be an even divisor of n with

gcd(n/k, p) > 1. Let Q(x) = Trn(
∑l

i=0 aix
pi+1) be a quadratic function from Fpn to Fp with

coefficients in Fp for which the associate A(x) ∈ Fp[x] of the corresponding linearized polynomial

L(x) satisfies

gcd(A(x), xn − 1) =
xn − 1

xk − 1
.

Then the curve X : yp − y =
∑l

i=0 aix
pi+1 over Fpn is maximal if and only if

• X : yp − y = c(x2 + 2xp
k+1 + · · · + 2xp

n−k
2 +1), c ∈ F∗p, p ≡ 3 mod 4 and v(k) = v(n),

where v(m) denote the 2-adic valuation of an integer m.

The curve X : yp − y =
∑l

i=0 aix
pi+1 over Fpn is minimal if and only if

• X : yp − y = c(x2 + 2xp
k+1 + · · ·+ 2xp

n−k
2 +1), c ∈ F∗p, p ≡ 1 mod 4 and v(k) = v(n), or

• X : yp − y = c(xp
k
2 +1 + xp

3k
2 +1 + · · ·+ xp

n−k
2 +1), c ∈ F∗p, v(k) < v(n).
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Proof. We distinguish two cases, the case that v(n) > v(k) and the case that v(n) = v(k).

Case(i): v(n) > v(k)

In this case (xn−1)/(xk−1) = 1+xk+· · ·+xn/2−k+xn/2+xn/2+k+· · ·+xn−2k+xn−k. Recall that

A(x) = (xn−1)/(xk−1)g(x), where g(x) = c0+c1x+· · ·+c1x
k−1+c0x

k and gcd(xk−1, g(x)) = 1.

Then with coefficient comparison we observe that the condition in Corollary 4.8 is satisfied, i.e.

we obtain a maximal or minimal curve, if and only if

A(x) = cxk/2
(

1 + xk + · · ·+ xn/2−k + xn/2 + xn/2+k + · · ·+ xn−2k + xn−k
)
.

Again, without loss of generality we consider the case c = 1 by Lemma 4.2. The corresponding

linearized polynomial L(x) and the quadratic function Q(x) are then given as follows.

L(x) =
(
x+ xp

k
+ · · ·+ xp

n/2−k
+ xp

n/2
+ xp

n/2+k
+ · · ·+ xp

n−2k
+ xp

n−k
)pk/2

Q(x) = Trn

(
xp

k/2+1 + xp
3k/2+1 + · · ·+ xp

(n−k)/2+1
)

We put n/k = pem, gcd(m, p) = 1, and write L(x)p
−k/2

as

L(x)p
−k/2

=
(
x+ xp

k
+ · · ·+ xp

(pe−1)k
)

+
(
xp

pek
+ xp

(pe+1)k
+ · · ·+ xp

(2pe−1)k
)

+ · · ·+
(
xp

(m−1)pek
+ xp

((m−1)pe+1)k
+ · · ·+ xp

(mpe−1)k
)

=
(
x+ xp

k
+ · · ·+ xp

(pe−1)k
)

+
(
x+ xp

k
+ · · ·+ xp

(pe−1)k
)ppek

+ · · ·+
(
x+ xp

k
+ · · ·+ xp

(pe−1)k
)p(m−1)pek

=

m−1∑
i=0

(
x+ xp

k
+ · · ·+ xp

(pe−1)k
)pipek

.

We note that, in this representation, each parenthesis contains exactly pe elements. Set L̃(x) =

x + xp
k

+ · · · + xp
(pe−1)k

. Then for all x ∈ Fppek we have L(x) = mL̃(x)p
k/2

, and hence we can

pick an element α ∈ Fppek with L̃(α) 6= 0 and consequently L(α) 6= 0. Again observing that

L̃(tα) = tL̃(α) for all t ∈ Fpk , we see that Ωc := αFpk is a complement of Ω in Fpn . We evaluate

Q on Ωc as

Q(tα) = Trn

(
(tα)p

k/2+1 + (tα)p
3k/2+1 + · · ·+ (tα)p

(n−k)/2+1
)

= mTrpek

(
tp

k/2+1(αp
k/2+1 + αp

3k/2+1 + · · ·+ αp
(n−k)/2+1)

)
= mTrk(t

pk/2+1β) ,

where β = TrF
pp

ek/Fpk
(αp

k/2+1 + αp
3k/2+1 + · · ·+ αp

(n−k)/2+1). Consequently

Q̂(0) = pn−k
∑
t∈F

pk

εQ(αt)
p = pn−k

∑
t∈F

pk

εmTrk(βtp
k/2+1)

p = pn−k(−pk/2) = −pn−k/2 ,
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where the last equality follows from Lemma 2 (iii) in [12]. Note that we again can exclude that

β = 0, otherwise Q̂(0) = pn, which is a contradiction.

Case(ii): v(n) = v(k)

In this case A(x) = (xn − 1)/(xk − 1)g(x), where g(x) = c0 + c1x + · · · + c1x
k−1 + c0x

k and

gcd(xk − 1, g(x)) = 1. By Corollary 4.8, with coefficient comparison we see that we obtain a

maximal or minimal curve if and only if

A(x) = c(1 + xk)
(

1 + · · ·+ x
n−k
2 + x

n+k
2 + · · ·+ xn−k

)
= 1 + 2xk + · · ·+ 2xn−k + xn, c ∈ F∗p .

Choosing c = 1, the corresponding linearized polynomial L(x) and quadratic function Q(x) are

given as follows.

L(x) = x+ 2xp
k

+ · · ·+ 2xp
(n−k)/2

+ 2xp
(n+k)/2

+ · · ·+ 2xp
n−k

+ xp
n

Q(x) = Trn

(
x2 + 2xp

k+1 + · · ·+ 2xp
n−k
2 +1

)
Since xp

n
= x for an element x ∈ Fpn , we can evaluate L(x) as

L(x) = 2(x+ xp
k

+ · · ·+ xp
(pe−1)k

) + 2(xp
pek

+ xp
(pe+1)k

+ · · ·+ xp
(2pe−1)k

)

+ · · ·+ 2(xp
(m−1)pek

+ xp
((m−1)pe+1)k

+ · · ·+ xp
(m−1)pek+(pe−1)k

)

= 2

m−1∑
i=0

(x+ xp
k

+ · · ·+ xp
(pe−1)k

)p
ipek

.

Hence for an element x ∈ Fppek , we have L(x) = 2m(x+ xp
k

+ · · ·+ xp
(pe−1)k

) = 2mL̃(x). Again

we can pick an element α ∈ Fppek with L̃(α) 6= 0 and equivalently, L(α) 6= 0. Using that L̃ is an

Fpk -linear map, we again observe that Ωc := αFpk is a complement of Ω. Again we evaluate Q

at tα for t ∈ Fpk .

Q(tα) = Trn

(
(tα)2 + 2(tα)p

k+1 + · · ·+ 2(tα)p
n−k
2 +1

)
= mTrpek

(
t2(α2 + 2αp

k+1 + · · ·+ 2αp
n−k
2 +1)

)
= mTrk

(
βt2
)
,

where β = TrF
pp

ek/Fpk
(α2 + 2αp

k+1 + · · · + 2αp
n−k
2 +1). Note that β can not be zero since

Q̂(0) 6= pn. Then by Corollary 3 in [12] we have

Q̂(0) = pn−k
∑
t∈F

pk

εQ(tα)
p = pn−k

∑
t∈F

pk

(εmp )Trk(βt2) = (−1)
p+1
2 η(β)pn−k/2 ,

where η is the quadratic character in Fpk .

Now we show that β is a square in Fpk . Write k = p`r with gcd(p, r) = 1 for some non-negative

integer `. Firstly note that as Fppek is compositum of Fpk and F
ppe+` without loss of generality
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we can chose α ∈ F
ppe+` . Then for any non-negative integer j we consider

TrF
pp

ek/Fpk
(αj) = αj + (αj)p

k
+ (αj)p

2k
+ · · ·+ (αj)p

(pe−1)k
.

Since {0, k, 2k, · · · , (pe − 1)k} ≡ {0, p`, 2p`, · · · , (pe − 1)p`} mod pe+`, by using the fact that

αp
pe+`

= α we obtain the following equalities.

αj+(αj)p
k
+(αj)p

2k
+· · ·+(αj)p

(pe−1)k
= αj+(αj)p

p`

+(αj)p
2p`

+· · ·+(αj)p
(pe−1)p`

= TrF
pp

e+` /F
pp

`
(αj)

This shows that β ∈ F
pp`

. On the other hand the extension degree of Fpk : F
pp`

is an even

integer as k is an even integer. This implies that β is a square in Fpk . As a consequence, we

have Q̂(0) = (−1)
p+1
2 pn−k/2.

2
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