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1. ABSTRACT

For an odd prime p and an even integer n with ged(n,p) > 1, we consider quadratic functions
from Fy» to I, of codimension k. For various values of k, we obtain classes of quadratic functions
giving rise to maximal and minimal Artin-Schreier curves over F,». We completely classify all
maximal and minimal curves obtained from quadratic functions of codimension 2 and coefficients
in the prime field F),. These results complement earlier results in [1] for the case that ged(n,p) =
1. This is a joint work with Wilfried Meidl.

2. INTRODUCTION

In this article we consider the Artin-Schreier cover of the Fj»-projective line given by

[n/2] _
(2.1) X:iyP—y= Z a;x? T with a; € Fpn |
i=0
where |m | denotes the integer part of the real number m. The genus g(X) of X is (p_zil)pl, where

[ is the largest integer with a; # 0, see (see Proposition 3.7.8 in [20]). By the Hasse-Weil bound,
the number of rational points N(X) of X satisfies

L+ p" = 29(X)p2 < N(X) < 1+4p" +2g(X)p?
ie.

n+21 n+21

(2.2) 1+p"—(p—1p 2z <NWX)<1+p"+((p—1)p 2

The curve is called maximal (respectively minimal) if it attains the upper (respectively lower)
bound in (2.2).
By Hilbert’s Theorem 90, the number of rational points N(X') of X is given by
N(X) =1+ pNo(Q) ,

where Ny(Q) is the number of solutions of Q(z) = Trn(ZZLZ(fJ a;z? ™) = 0 and Try(2) is the
absolute trace of z € Fyn.

As we will see, the determination of Ny(Q) requires the exact evaluation of the character sum

n/2] o iy
(2.3) Y g )

:EE]Fpn
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called the Walsh coefficient of Q(z) = Trn(zitz(/)2J a;z?' 1) at 0. Only a few character sums of
the form (2.3) have been determined explicitly. In [12, 5] the character sum (2.3) is determined
for monomials Q(x) = Trn(aacpiﬂ) for an odd prime p. Using these results, all maximal and
minimal curves of the form y? — y = azP' ™1 are classified. Some more results are known for
p =2, see [6, 10, 11, 14, 18, 19]. Moreover, results on the distribution of character sum can be
found in [2, 8, 9].

In the recent paper [1], some more classes of character sums of the form (2.3) for odd primes
p with ged(n,p) = 1 and coefficients a; in the prime field have been evaluated, which induce
some more classes of minimal and maximal curves. We summarize the main results of [1] in the

following two propositions. By v(m) we denote the 2-adic valuation of an integer m.

Proposition 2.1. Let n be an even integer with ged(n,p) = 1, and let k be an even divisor of
n. The curve X over Fpn given by

n—k
X yp—y:c($2+2xpk+l+~--+2xpT+l) , cel,

is mazimal if and only if p =3 mod 4 andn =2 mod 4, and minimal if and only if v(k) = v(n)
and p=1 mod 4, or v(k) =v(n), p=3 mod 4 and n =0 mod 4.
The curve X over Fpn given by

k 3k n—k
Xy —y=claP T 4aP> 4P 2 F) ceF;
is minimal if and only if v(k) < v(n) (and never mazimal).

Using the results of Proposition 2.1, in [1] all maximal and minimal curves over F,» of the form
(2.1) with coefficients in the prime field F,,, p odd, and genus p;;p(””)/ 2 have been classified
under the assumption that ged(p,n) = 1. We can state the result as follows.

Proposition 2.2. Letn be an even integer with ged(n,p) = 1, and let X : yP—y = ZZLZOQJ a;xP' T =
— p=1,(n-2)/2
=557
Then X is mazimal over Fpn if and only if

e n=2mod4, p=3mod4, and Q(z) = c(z® + 22"t + ... 4 2xp7_1+1), ceFy,
and X is minimal over Fpn if and only if

en=2 mod4, p=1mod4, and Q(z) = c(x? + 20P 4. 4 2xp771+1), ceT,, or

e n=0 mod 4, and Q(z) = c(aPt! + 27’1 4 ... 4 l‘p%71+1), ceF.

Q(z) be a curve of genus g(X) , where coefficients a; lie in the prime field Fp,.

In all proofs in [1] the condition ged(n, p) = 1 plays a central role. The objective of this article
is to analyze the analog curves for the more complicated case that ged(n,p) > 1.

In Section 3 we present some results on the Walsh transform of quadratic functions, which
will be needed in the sequel. In Section 4 we relate the number of points of a curve of the form
(2.1) to the Walsh coefficient at zero of the corresponding quadratic function. In Section 5 we
present some new classes of maximal and minimal curves of the form (2.1) for the case that
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ged(n,p) > 1. In particular, combining with the results in [1] on the case ged(n,p) = 1, we
classify all maximal and minimal curves of the form (2.1) obtained from quadratic functions of
codimension 2 whose coefficients lie in the prime field F,,.

3. QUADRATIC FUNCTIONS AND WALSH TRANSFORM

Let n be an integer and let p be an odd prime. Omitting linear and constant terms, a quadratic
function @, i.e. a function of algebraic degree 2, from IF;» to IF}, can be represented in trace form

as
[n/2] _

(3.1) Q(x) = Tro( Y aa? ™)
i=0

with ag,...,a|,/2) € Fyn. If n is odd, this representation is unique. Observing that 2P e

I n/2, we obtain that Trn(an/zxpn/zﬂ) = Trn/g(alrpn/QHTr]Fpn/]Fpn/2 (an/2)). Consequently, if n is
even, then the coefficient a,, is only unique modulo the group G' = {a € Fyn | Trp,, /F ns2 (a) =
0}. In this article we are interested in curves of the form (2.1) obtained from quadratic functions
@, which attain the Hasse-Weil bound (2.2). In particular, we are only interested in the case
that n is even.

For a function f : Fyn — Fp, an element a € Fy» for which the derivative D, f(x) = f(z +
a) — f(x) is constant is called a linear structure of f. The set Q of the linear structures of f
is a subspace of Fp» called the linear space of f, see [15, 21]. As easily seen, for all a € © and
x € Fpn, we have f(x +a) = f(x) + f(a) — f(0). In particular, f is linear on Q if f(0) = 0.

~

The Walsh coefficient Q(b) of @ at the value b € Fj» is the character sum

Qo) = 3 @-Talbn) o 2l

:BE]Fpn

As well known, every quadratic function ) from F,» to I, is s-plateaued, i.e. for all b € Fy» we
have Q(b) = 0 or |Q(b)| = p"z" for a fixed integer 0 < s < n, depending on Q. This integer s is
exactly is the dimension (over F)) of the linear space 2 of @, see [3].

The linear space of a quadratic function (3.1) is the kernel (in Fj;» ) of the linearized polynomial

(ct. [12, 13))

[n/2] _ o
L(z) = Z aiz? +al a?
=0

n—u

Consequently @ : Fpn — IF), is s-plateaued if and only if

(3.2) deg(ged(L(x), 2" —z)) =p° .
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If all coefficients a; of Q(x) are in the prime field F),, then then the linearized polynomial

corresponding to @ is

[n/2] _ »
(3.3) L(z) = Z a;z? + a;x?
i=0
with the p-associate
ln/2) '
(3.4) Az) = Z a;z' + a;x" " .
i=0

Using the concept of the p-associate we can then facilitate the determination of s in Equation
3.2 as

s = deg(ged(A(z),2" — 1)) ,
see also [1, 13, 17]. We observe that A(x) = z?h(z) for a non-negative integer d and a self-

reciprocal polynomial h of degree n — 2d. Consequently, if A(x) is the associate of a linearized
polynomial corresponding to an s-plateaued function @) with coefficients in F,, then

ged(A(x),z" —1) = ,
with f@)=(@—-1°04+bz+--+ba" 10 42579 5e{0,1} .

The polynomial A(x) can then be written as

st —1
where g(x) = co+ 1@ + -+ @ 5T 4oz ST with ged(f(x), g(x) =1 .

An important notion for functions from Fy» to IF,, is extended affine equivalence (EA-equivalence).
Two functions f, g from Fy» to ), are called EA-equivalent if there exist a linearized permuta-
tion polynomial P(x), a linearized polynomial £(x) and constants a,e € Fy,, d € Fp» such that
g(x) =af(P(z) +d)+ L(z) +e.

In the framework of the isomorphic vector space ), the Walsh transform of a function f : F) —
F, is given by

Foy=>" @bt perr,
z€Fn

where b - = denotes the dot product in Fj. In this framework two functions f, g from F} to [,
are EA-equivalent if there exist an invertible n x n-matrix P over F), elements u,v & F, and
constants a, e € F}, such that g(x) = af(Px+u)+v-x+e for all x € F}.

It is well known that Walsh spectrum (value set of the Walsh transform) and algebraic degree are
invariant under EA-equivalence. In particular affine coordinate transformations do not change

the Walsh spectrum. More precisely, the effect of coordinate transformations is given as follows.

— ~

T1: f(x+ u)(b) = b fi(b),
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T2: if P € GL,(Fp) then J@(b) = f((P~Y)"b), where PT denotes the transpose of the

matrix P.

4. WALSH TRANSFORM AND THE NUMBER OF POINTS

Objective in this section is to relate the number of rational points N(X) of X given as in
(2.1) to the Walsh coefficient @(O) of Q(x) = TL"TL(ZZLZ{)QJ a;z?' T at 0. This will be used in
Section 5 to obtain some classes of maximal and minimal curves. We choose here a different
approach than in [1] based on character sums. We first show that for odd p a quadratic function
@ without an affine term satisfies @(0) = (p(t9)/2 for some ¢ € {1,—1,4,—i}. In particular
this shows @(0) # 0.

Lemma 4.1. For an integer n and an odd prime p, let Q(x) = Trn(ZZLZé2J az? ), a; € Fpyn.
Then

@(0) :I:pnTH if n — s even, orn — s odd and p = 1 mod 4,
j:ip% ifn—s odd and p = 3 mod 4

for some integer 0 < s <n —1.

Proof. We may consider the isomorphic vector space ;. Any quadratic function (without a
linear or constant term) from ), to IF, can be transformed by an affine coordinate transformation
to a diagonal form

Qx) = dlx% 4+ 4 dn_sx%_s

for some integer 0 < s <n—1,and d; # 0 fori =1,...,n—s, see [16, Section 6.2]. By Properties
T1 and T2, an affine coordinate transformation does not change the Walsh coefficient at 0. For
the function ¢(x) = dz? on F,, by [16, Theorem 5.33] and [16, Theorem 5.15] we have

n(d)p% if p=1 mod 4,

4.1 20) =3 ¢ =n(d)G(n.x1) =
(4.1) a(0) %ep n(d)G(n, x1) D(d)ip i p=3mod 4.

where X1 is the canonical additive character of IF,, 7 denotes the quadratic character of ), and
G(n, x1) is the associated Gaussian sum. This shows the correctness for n = 1.

For two functions g1 : F" — F), and go : F)) — F), the direct sum g1 @ g3 from F)) x F" = Fg“r”
to I, is defined by (g1 ® g2)(z,y) = g1(z) + g2(y). As easily seen,

—

(4.2) (91 @ 92)(u, v) = g1(u)g2(v) .

The assertion for arbitrary n follows then from (4.1), applying (4.2) recursively to g;(x;) = d;x?,
1 < i < n, together with the simple observation that for n — s + 1 < i < n, where d; = 0, we
have ¢;(0) = p. O
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Let f € Fyn[z], and let m be an integer with ged(m,n) = t. Then, following the arguments in
7], for the number N(f) of solutions (z,y) € Fpyn X Fpn of y?" —y = f(x) we have

pnN(f) — Z Eg‘rn(a(f($)—(ypm—y))) — Z egrtl(af(x)) Z Egrn(ay_aypm)
a,:r:,yeIFpn a,xern yEFpn

(4.3) =Y ) 3 M@ ) o § Y (Tes@)
a,xE]Fpn yE]Fpn CLE]Fpt xE]Fpn

where in the last step we used that a?" — a vanishes if and only if a € F pt = Fpm NFpn. We use

Equation 4.3 to express the number of rational points over F,» of a curve

1
X:yq—y:Zamqi"‘l , a; €Fpn ,0<4 <1
i=0
with ¢ = p™ for any divisor m of n. In the proof of the subsequent Theorem we will use the
following Lemma, see [4, Theorem 1].

Lemma 4.2. For a divisor m of n and q = p™, a quadratic function from Fpn to I, of
the form Q(x) = Trn(ZlLZ{)(Qm)J bizd ), b € Fy, is s-plateaued for an integer 0 < s < n
which is divisible by m. For a nonzero element a € Fy, the function Qq(x) given by Q.(z) =
Try(a ZZLZ{)(Qm)J bi:cqiﬂ) s also s-plateaued with the same integer s, and

Qu(b) = p(a)

where p denotes the quadratic character in Fy.

Q) , beFym,

Theorem 4.3. For an odd prime p and a divisor m of n let ¢ = p™, and let Q(z) = Trn(Zé:o aixqiﬂ),

";LS. Then the number

Im < n/2, be an s-plateaued quadratic function from Fpn — F,,. Set k :=
of rational points of

1
1
X:yq—y:Zaiqu
i=0
over Fyn is given by

1+p"+ (g—1)Q(0) ifk is even,

N(X) = 1+4pNo(Q) = { L4 if k is odd.

Proof. Let N(Q) be the number of solutions in Fpn x Fpn of y? —y = 22:0 aixqi‘ﬂ, and hence
N(X) =14 N(Q). Denoting the set of nonzero squares in F, by Sq and the set of non-squares
in F, by NSq, by Equation 4.3 we have

N@ =Y > @@ =p+ 3" Qu0)+ > Qal0).

a€F,m z€F,n a€Sq a€NSq

First suppose that & = =2 is even. Then by Lemma 4.2 we have C/;)\a(()) = @(0) for all a # 0.

~

Consequently, N(Q) = p" + (¢ — 1)Q(0) and the statement for k even follows.
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I/f\k = -2 /i\s odd, then again by Lemma 4.2, C/Q\a(O) = @(O) if a is a nonzero square in F,,, and
Q4(0) = —Q(0) if a is a non-square in F),. Hence N(Q) = p". O

Combining Lemma 4.1 and Theorem 4.3 we get the next corollary.

Corollary 4.4. For an odd prime p and a divisor m of n, let ¢ = p™, and let Q(x) =
Tlrn(z:li:O a;izd 1), Im < n/2, be an s-plateaued quadratic function from Fyn — Fp. The number
of Fpn-rational points of the curve

l
X:iyl—y= Zaixqi“
i=0
is given by
1+p"+A(p™ — 1)pn—;5 if (n — s)/m is even,

1+p" if (n —s)/m is odd,

N(X) = {
where

-1 Q) =-p".

Remark 4.5. Lemma 4.1 implies that @(O) # 0 if p is odd and @ does not contain a linear
term. However, if the quadratic function contains a linear term, then we may have CA)(O) =0,
i.e. the function @ is balanced. In this case N(X') =1+ p".

A:{ L Q) =p"7,

Since we are particularly interested in maximal (respectively minimal) curves X' : y? —y =
ZZLZOZJ a;zP' Tt of the form (2.1), we consider quadratic functions @ : Fpn — F, with even n.
The subsequent corollary describes the conditions on @ required to obtain maximal (respectively

minimal) curves.

Corollary 4.6. Let Q(z) = Trn(ZZLZ{)QJ aiznpi‘*'l) be an s-plateaued quadratic function from Fyn
to Fp, and suppose that I < n/2 is the largest integer for which a; is non-zero. Then
[n/2]

Xy —y= Z ax?"
i=0

is a mazimal (respectively minimal) curve over Fpn if and only if n is even, s = 2l and A =1
(respectively A = —1).

Proof. The statement follows from Corollary 4.4 and Inequality 2.2 with g(X) = %pl. m

Remark 4.7. If X is maximal or minimal, then the dimension s of the linear space of () must
be even.

Corollary 4.8. Let Q(x) = Trn(Z?:/(z) a;z? T be an s-plateaued function from Fyn to Fp, and

set k :=n—s. The curve X : yP —y = Z?:/g aimpi“‘l over Fyn is mazimal or minimal if and
only if

an =an_y = =0nk, =0 and Ut #0.

2

NE
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Proof. The statement follows from Corollary 4.6 with [ = "2;k 0

We remark that an =an_1=-=0nk 4 = 0 together with the Hasse-Weil bound already
2
implies an-# # 0.
2

5. MAXIMAL AND MINIMAL CURVES

In this section we consider curves over Fyn of the form X' : yP —y =3 aixp““l with coefficients
a; in the prime field F,, and ged(n, p) > 1. Our results complement the results of [1], where similar
curves for the easier case that ged(n, p) = 1 have been considered. We first completely character-
ize all maximal and minimal curves obtained from quadratic functions Q(z) = Try(Y a;zP' 1)
of codimension 2, i.e. quadratic functions with linear space of dimension s = n — 2. Then we
presents some more infinite classes of maximal and minimal curves of various genus, i.e. curves
obtained from quadratic functions of various codimension.

We start with a lemma which excludes many curves from being maximal or minimal. The
proof of the lemma is also given implicitly in the proof of Theorem 5.5 in [1] on curves obtained

from quadratic functions of codimension 2.

Lemma 5.1. Let X :yP —y = Zé:o a;x? 1 with coefficients in the prime field F, and I < n/2.
Let A(x) be the p-associate (3.4) of the linearized polynomial (3.3) of Q(x) = Trn(Zizo a;zP ).

If the curve X over Fyn is mazximal or minimal, then

acd(A(z), " — 1) =
for a polynomial f(x) with f(1) =0.

Proof. Let ged(z™ — 1, A(z)) = (2™ — 1)/ f(x) for a polynomial f(z) of (even) degree k, which
is not divisible by © — 1. Then
" -1

@) g9(z)

A(z) =(x—1)

with

fl@)y=byg+bix+---+ bizF ™t + boz®, g(x)=co+cz+---+ 1272 + ezt € Fplx]
and ged(f(z),g(x)) = 1. Consequently, we have the following equality.
(5.1) A(x)(bg+biz+---+bia* b)) = (2" —a” —zx+1)(co+crz+- -+ 122 Fepab )
By Corollary 4.8, the corresponding curve is maximal or minimal if and only if

A(z) :ao—i-alx—i-"-—i-anT_kanik —i—anT_ka?nT% 4+ a1z + apz" with Unk #0 .
Comparing the coefficients of 2" in Equality 5.1, we then obtain that

QaMbo =0.
2
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Since f(x) has degree k and an_x # 0, we get a contradiction. a
2

We consider now quadratic functions Q(z) (with coefficients in the prime field F)) of codimension
2, i.e. the associate A(z) of the corresponding linearized polynomial satisfies ged(A(x), 2" —1) =
(™ — 1)/ f(z) for a polynomial f(z) of degree 2.

Theorem 5.2. Let p be an odd prime with ged(n,p) > 1, and let Q(x) = Trn(Zi:o a;a? 1)
be a quadratic function from Fpn to I, with coefficients in F,, for which the linear space has
dimension n — 2. The curve X : yP? —y = Zé:o a;xP" 1 over Fpn is mazimal if and only if

° X:yp—y:c(x2+2xp2+1+---—|—2xp7_1+1), c€F,, n=2mod4 and p =3 mod 4.
The curve X : yP —y = Zé:o aia:p““l over Fpn is minimal if and only if
o Xy —y= c($2+2xp2+1+---+2mp771+1), ce€Fy, n=2 mod4 andp=1mod 4, or

o X :iyP —y=c(aPtl 4 aP’ 4 pgp? H) ceF; andn=0 mod 4.

Proof. By Lemma 5.1, ged(A(x),2™ — 1) = (2™ — 1)/ f(x) for a quadratic polynomial f(z)
which is divisible by z — 1. Hence we must have f(x) = 22 — 1. By (3.5), the polynomial A(x)
is then of the form

(a) A(z) = cx;;j for some c € I}, or
cl’

xQ:% 22 4 ax + 1) for some a # +2 and ¢ € Fy.

First we consider the case (a). In this case

Alz) el a3 e 22 g2 g /272 g3 ) ifn=2 mod 4
€Tr) =
e T g g2 /27 a8 ) ifn=0 mod 4,

and hence the corresponding quadratic function is given by

o) Try, (c(@Pt! 4 2P ™ oo g7 (1/2)xp"/2+1)) if n=2 mod 4
xr) =
Tr, (c(a?t! + 2P+ 4. 4 xpn/%lﬂ)) ifn=0 mod 4.

By Corollary 4.8, we obtain a maximal or minimal curve from Q(z) only for n = 0 mod 4.
To determine whether the resulting curve is maximal or minimal, we have to calculate @(0)
explicitly, for Q(z) = Try(c(aP™ + 2?*+1 4 ... 4 2#"*7'+1)). We note by Lemma 4.2 the sign
in @(0) is independent from the constant ¢ € Fy since n — 2 is even. We therefore may without
loss of generality choose ¢ = 1. Then the linearized polynomial corresponding to @ is given by

n—1 n—3 n/2+1

Liz)=a" " 4o e g L pap
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Since we suppose that ged(n,p) > 1, we put n = mp®, e > 1, and ged(p,m) = 1. Then we can
write L(z) as

14-2kp®© 3+2kp® 2p€ —14-2kp®
L(z) = E xP + 2 +oo a2
k=0
(m—2)/2 e
p P’ p2p671 P%p
= E 4+
k=0

For an element x € szpe we have
e_o\P
L(z) = (m/2) (x T R ) .

Set L(x) = w4+ a?" +---+ a7 so that L(z) = (m/2)L(x)? for = € Fape. Clearly, [Ker(L)| <
degL = p*°~2. (In fact, o (27" — z) o L(z), and hence the zeros of L lie in [ 2pe , which
implies that |Ker(L)| = degL = p**"~2.) We can pick o € IF2pe such that L(a) # 0, and hence
L(a) # 0. Then, since L(tx) = (m/2)tPL(x)? for all t € Fj2 and = € F e, the 2-dimensional
vector space Q¢ := o> satisfies 2N Q° = {0}, where 2 := Ker(L) is the linear space of Q.
Consequently, Q¢ is a complement of 2 in Fyn.

To determine the Walsh coefficient of @ at 0, we write x € Fyn as © = y + 2z with y € {2 and
z € )¢, and take an advantage of the fact that ) is linear on 2. We have

~ . . P Leqe € if Q(y) =0 for ally € Q,
Q(0) = E Q) (E :eg(y))(E ( eg( )) _ { > ieqe €p (y) Y

p .
z€Fpn yeN YeQe 0 otherwise.

By Lemma 4.1 @(0) # 0, so we conclude that @(0) = pn—2 > e 6763?(2)‘
For z € Q° with z = at, t € F)2, we get
Q(z) = Tr, (at ((Oct)p + (at)p3 NI (at)p"/%l))
= Tr, <tp+1 <ap+1 Loty ap”/2‘1+1>>
= "', (ozp“ +aoP g Oép’“h/z’—1+1>
— PLQ(a).

In the last equality we used that tP*! ¢ [, if ¢ € Fp2. For the Walsh coefficient of @ at 0 we
then obtain

Q) = 7 X O = (1) DD ()
teF o y€Fp\{0}

= p" P+ (p+1)(-1)=—p"".

Note that in the last step we can exclude that Q(«) = 0, otherwise we get @(0) = p", a
contradiction. This finishes the proof for the case (a).
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Now we consider the case (b), where A(z) = c(z" 2+ 2" 4+ ... + 22 + 1)(2? + az + 1) for
some a # £2 and ¢ € F;. Again we can without loss of generality choose ¢ = 1. In order to get

n/2

a maximal or minimal curve, the coefficient a,, /o of 2"/< must be zero by Corollary 4.8. This

holds if and only if n =2 mod 4 and
Alx) = (" 24244 a2 27 ) (e 1)

The corresponding linearized polynomial is then given by

n/2+3 n/2+1

L(z) =" + 227" " 4 -« + 227 + 22 ot 22 42

. n
Since zP" = z for an element x € Fyn, we can evaluate L(x) as

/p(m—2)pe (m—2)p©+42

+-~+2(x + 2P +---+x”"‘2) .

In this representation each parenthesis contains exactly p® summands. We observe that for an
element x in F ¢, we have L(z) = m(z + o +xp2p672) = mL(x). As observed above, the
kernel Ker(L) in Fpn of L lies in Fp2pe and has cardinality p?°~2 and there exists an element
« € Fope such that L(a) # 0, hence L(a) # 0. Since L(ta) = mL(ta) = mtL(a) for all t € Fpe,
the 2-dimensional vector space (2° = alF 2 over I, is again a complement in Fy» of €}, the linear
space of (). As in the case (a),

@(0) :pn—2 Z 61?(2) _ pn—2 Z eg(ta).

zEQ¢C teIFp2
We have
Q(ta) = (m/2)Trope ((ta)2 + 2(ta)p2+1 + 2(ta)p4+1 NI 2(to¢)pn/271+1>

= (m/2)Trype <t2(a2 + 20 T 2P Ly Qap"/%l—s-l))

= (m/2)Trs (Bt?) ,
where § = Trg , /F 2 (0% + 207"+ 4 20P" 1 4 gap"/2*1+1). It 8= 0 then

P
A0 = 3 )yt 3 () e
tGFPQ tGFPQ

which is a contradiction. Hence 5 # 0, and

QUO)=p" 2 Y Q) = 2 N (/2 Ta(B) — (1) (g)pn Y,

teF o teF 2

where last equality follows from Corollary 3 in [12].
As a final step we determine the quadratic character n(8) of 8 € Fp2. Since Fjzpe is the

compositum of F,c and F2, and L(ty) = tL(y) for all t € Fp2 and v € F e, we cannot have

pp?
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fj('y) = 0 for all v € Fpe. Hence without loss of generality we can choose a € F,pe. Using the
fact that a?’ = «, for any non-negative integer j we get

Pt -2

: : ;2 . 4 o op€—1 ;2
Tr (@) = o+ +a +- + 7 ta +o+ P
F ope /Fp2

J o g% o dpt gpP Tt b jpP 2
= o +aof Fot +to +aoat+ o

_ ip ip? jpP" 2 P
= 4+ +dP +-t + o

J
= Trpe(a?).

In particular this shows that g € Fy, and therefore § is a square in F2. As a consequence,
p

Q(0) = (1) pn1. 0

Remark 5.3. Theorem 5.2 is considerably harder to obtain than the analog theorem in [1] for
the case that ged(n,p) = 1. Together with the result on the case ged(n,p) = 1, Theorem 5.2
completely classifies all maximal and minimal curves obtained from quadratic functions in odd
characteristic p of codimension 2 and coefficients in the prime field F,. Maximal and minimal
curves obtained from quadratic functions in characteristic 2 of codimension 2 and coefficients in
[F5 are characterized in [10].

We finish this section with a generalization of Theorem 5.2 to quadratic fucnctions for which
the p-associate A(z) satisfies gcd(A(z),z" — 1) = (2" — 1)/(z* — 1) for an (even) divisor k
of n. As a result we obtain infinite classes of maximal and minimal curves obtained from
quadratic function with various codimenson k, respectively curves of various genus. The easier
case that ged(n,p) = 1 has been dealt with in [1, Theorem 5.3]. In fact, the proof of Theorem
5.3 in [1] holds more generally for the case that ged(n/k,p) = 1. Hence we here suppose that
ged(n/k,p) > 1.

Theorem 5.4. Let n be an even integer divisible by p and let k be an even divisor of n with
ged(n/k,p) > 1. Let Q(x) = Trn(z:i:o a;a? ™) be a quadratic function from Fpn to F), with
coefficients in ), for which the associate A(x) € Fplz| of the corresponding linearized polynomial
L(x) satisfies

" —1

xk -1

Then the curve X : yP —y = Zi‘:o aizvpi‘H over [Fpn is mazimal if and only if

ged(A(z),z" — 1) =

n—k
o X :yP—y= C($2+2xpk+1+'--+2xp P ce Fy, p =3 mod 4 and v(k) = v(n),
where v(m) denote the 2-adic valuation of an integer m.
The curve X : yP —y = 22:0 a;zP' 1 over Fpn is minimal if and only if
n—k
o X: yp—y:c(x2+2:1cpk+1—|—-~+2xp 2, ceF; p=1 mod 4 and v(k) = v(n), or

k 3k n—k
o Xy —y=c(aP? T +aP? T4 pa? 7 T ceF5, v(k) <v(n).
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Proof. We distinguish two cases, the case that v(n) > v(k) and the case that v(n) = v(k).
Case(i): v(n) > v(k)
In this case (2" —1)/(xF —1) = 14aF4- - pan/2=Fpgn/2 pgn/24k 4 gn=2k 4 zn—F Recall that
A(x) = (z"—1)/(z*—1)g(x), where g(x) = co+crz+- - -+ec1z¥ 1 +cozh and ged(2F—1, g(2)) = 1.
Then with coefficient comparison we observe that the condition in Corollary 4.8 is satisfied, i.e.

we obtain a maximal or minimal curve, if and only if
A(.’L‘) _ C.’L‘k/Q (1 + mk 4t xn/?—kz + xn/? + xn/2+k 4t mn—2k + xn—kz) .

Again, without loss of generality we consider the case ¢ = 1 by Lemma 4.2. The corresponding
linearized polynomial L(z) and the quadratic function Q(x) are then given as follows.

k/2

n/2 n/2+k

n/2— n— n—k\P
L(z) = (x+:vpk+---+xp/2k+xp Fa? T T ’“)

Qz) = Try <xpk/2+1 NI s R ST $p<"*’“)/2+1)
We put n/k = p°m, ged(m, p) = 1, and write L(z)" """ as
- (aj + 2 +-+ xp(pe_l)k> + (xpp% + xp(pEJrl)k 4+t J;P(2p6_1)k)

+ + (lip(mfl)pek i l’p((mfl)peﬂ)k‘ i n xp(mpefl)k)

pk/2

L(x)

e_ e_ ppek
= (z+a” + - 42?” Dk) + (ifﬂcpk 4o a?” Dk)

m—1)pk

e pl
--+<x+$pk+-~+mp(p Uk)

3 +

—_

€_ p
- (w42 4 2™

7

ip€k

I
o

We note that, in this representation, each parenthesis contains exactly p® elements. Set E(:E) =
z+a? + - 4+ 2P """ Then for all z € Fpper we have L(z) = mf/(x)pkm, and hence we can
pick an element o € F per with L(a) # 0 and consequently L(a) # 0. Again observing that
L(ta) = tL(«) for all t € Fpx, we see that 2° := alf » is a complement of ) in F». We evaluate
Q on Q€ as

Q(ta) = Try, <(toz)pk/2+1 + ()P (ta)p““’“)/%l)
= mTrpeg (tpk/Q"‘_l(Ozpk/Q'*'1 NI e = ITE ap<"”“)/2+1))
18,

k/2 3k/2 —k)/2
where 8 =Trp ., 5 (P Pl g T +1). Consequently
P p

~ B _ k/2 _ B
Q(O) _ pn k Z Eg(at) _ pn k Z engrk(ﬁtp ) _ pn k(_pk;/Q) _ _pn k/2 7
terk tEIFpk

k/2

= mTrk (tp
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where the last equality follows from Lemma 2 (iii) in [12]. Note that we again can exclude that
B =0, otherwise @(O) = p", which is a contradiction.

Case(ii): v(n) = v(k)
In this case A(z) = (2" — 1)/(2* — 1)g(z), where g(z) = co + c1z + --- + c12F~! + coz* and
ged(z® — 1,g(x)) = 1. By Corollary 4.8, with coefficient comparison we see that we obtain a

maximal or minimal curve if and only if
k ntk n—k k n—k _, .n *
A(m):c(l—i—m)(l—i— I TR >:1+2x +o 20" 2 ceF, .

Choosing ¢ = 1, the corresponding linearized polynomial L(z) and quadratic function Q(z) are
given as follows.

2xp(n+k)/2 n—=k n

L(z) = w422 22?4 +oo+22F 0 2P

n—k
Qz) = Ty (xQ LogPttl Ly QmpT—s-l)

. n
Since 2P = x for an element x € Fyn, we can evaluate L(x) as

pPe—1) p(Pe 1k p(2pe—1)k)

k) + Q(xpp% +x

p(mfl)pgk + :L‘p((mfl)pe+1)k

L(z) = 2(x+xpk+~-+x + -+

(mfl)pekﬂ»(pefl)k)

_|_..._|_2(33 + .4 P

m—1
(P®=1)k | ip©k
2 Z (x + a? -4 P LA
1=0

Hence for an element € Fpex, we have L(z) = 2m(z + a? 4t xp(ptl)k) = 2mL(x). Again
we can pick an element o € Fper with L(a) # 0 and equivalently, L(«) # 0. Using that L is an
[F,s-linear map, we again observe that Q¢ := ol x is a complement of (2. Again we evaluate Q
at ta for t € Fpe

n—k
Qta) = Try <(ta)2 +2(ta)P 4 £ 2(ta)P +1>
n—k
= mTrpep (tQ(a2 NEDYY o o ST QQPTJrl))
= mTrk (IBtQ) ,

n—k
where 8 = Trp ., /r L(a? + 207"+l 4 ... 4 2aP 7 1), Note that B8 can not be zero since
p P
Q(0) # p™. Then by Corollary 3 in [12] we have
o o (B2 ptl _
nkz Q(ta) _pnkZ Tkﬂt)_(_l)gn(ﬁ)pn k/2’
teF ok tel pk

where 7 is the quadratic character in [
Now we show that 3 is a square in F .. Write k = plr with ged(p,r) = 1 for some non-negative
integer ¢. Firstly note that as F pex is compositum of F,. and Fppe+l without loss of generality
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we can chose o € IFppeH. Then for any non-negative integer j we consider

j\p(P° 1)k ‘

Tre e /e, () = o + (@) + ()P + -+ 4 (o)

Since {0,k,2k,---,(p¢ — 1)k} = {0,p%,2p%, -+, (p° — 1)p’} mod p°*¥, by using the fact that
e+/4

" = a we obtain the following equalities.

ap

p(pe—l)pz

. 2 é . .
+(a?)? P +(a) = Trp P (o)
P P

e l
)p(p L pP

o+ (0P (o = o/ +(af)

This shows that § € Fppe. On the other hand the extension degree of Fx : ]Fppz is an even
integer as k is an even integer. This implies that 3 is a square in F,x. As a consequence, we

have Q(0) = (—1)"2 pnk/2,
O
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